Sectional category, Relative category and Topological complexity

Jean-Paul Doeraene and Mohamed El Haouari

Université de Lille

March 18, 2023

Ganea construction

Definition

For any map $\iota_X : A \to X$, the *Ganea construction* of ι_X is the following sequence of homotopy commutative diagrams (i > 0):

where the outside square is a homotopy pullback, the inside square is a homotopy pushout and the map $g_i: G_i \to X$ is the whisker map induced by this homotopy pushout. The induction starts with $g_0 = \iota_X : A \to X$.

Geometric construction

If $\iota_X : A \to X$ is a closed cofibration (in which case $\iota_X(A) \cong A$), $G_i(\iota_X) \simeq \{ (\omega_0, \omega_1, \dots, \omega_i) \in (X^{[0,1]})^{i+1} \text{ such that} \\ \omega_j(0) = \omega_0(0) \text{ for all } j \text{ and } \omega_k(1) \in A \text{ for at least one } k \}$

and

$$g_i: G_i \to X: (\omega_0, \omega_1, \ldots, \omega_i) \mapsto \omega_0(0).$$

Domination

Definition

Consider the following diagram

such that $\varphi \circ \iota_Y \simeq \iota_X$. 1) If there is a homotopy section σ of φ , i.e. $\varphi \circ \sigma \simeq \operatorname{id}_X$, we say that ι_X is (simply) dominated by ι_Y along φ . 2) If there is a homotopy section σ of φ such that $\sigma \circ \iota_X \simeq \iota_Y$, we say that ι_X is relatively dominated by ι_Y along φ .

We omit 'along φ ' if the context is clear enough.

Definition

Let $\iota_X : A \to X$ be any map. 1) The sectional category of ι_X is the least integer n such that the map $\iota_X : A \to X$ is dominated by $\alpha_n : A \to G_n(\iota_X)$ along $g_n : G_n(\iota_X) \to X$. 2) The relative category of ι_X is the least integer n such that the map ι_X is relatively dominated by α_n along g_n .

We denote the sectional category by $\operatorname{secat}(\iota_X)$, and the relative category by $\operatorname{relcat}(\iota_X)$. If A is the zero object *, we write $\operatorname{cat}(X) = \operatorname{secat}(\iota_X) = \operatorname{relcat}(\iota_X)$.

Example

Section of $G_1(S^1) o S^1$.

Proposition

We have secat $(\iota_X) \leq n$ (respectively: relcat $(\iota_X) \leq n$) if and only there exists a sequence of homotopy commutative diagrams :

such that $\iota_0 = id_A$, $\rho_i \circ \sigma_i \simeq id_A$, the square is a homotopy pushout and ι_X is simply (respectively: relatively) dominated by ι_n .

Lemma

Assume we have a homotopy commutative diagram :

If ϕ has a homotopy section, then secat $(\iota_X) \leq \text{secat}(\kappa_Y)$.

In particular (with B = * and X = Y), for any map $\iota_A \colon A \to X$, we have secat $(\iota_X) \leq \operatorname{cat}(X)$

Lemma

Assume we have a homotopy pullback :

Then secat $(\kappa_Y) \leq \text{secat}(\iota_X)$ and $\text{relcat}(\kappa_Y) \leq \text{relcat}(\iota_X)$.

Lemma

Assume we have a homotopy pushout :

$$\begin{array}{c} A \xrightarrow{\iota_X} X \\ \downarrow & \downarrow \\ B \xrightarrow{\kappa_Y} Y \end{array}$$

Then relcat $(\kappa_Y) \leq \operatorname{relcat}(\iota_X)$.

In particular (with B = *), for any map $\iota_A \colon A \to X$, if C is the homotopy cofibre of ι_X , we have $\operatorname{cat}(C) \leq \operatorname{relcat}(\iota_X)$

Theorem

For any map $\iota_X : A \to X$, we have :

 $\operatorname{secat}(\iota_X) \leqslant \operatorname{relcat}(\iota_X) \leqslant \operatorname{secat}(\iota_X) + 1.$

Cube axiom

The deepest properties of the sectional and relative categories rely on this 'axiom' which is satisfied in usual model categories.

Axiom (Cube axiom)

For any homotopy commutative diagram :

if the bottom face is a homotopy pushout and the four vertical faces are homotopy pullbacks, then the top face is a homotopy pushout. The following corollary shows that the sectional and relative categories of a map differ whenever the category of its homotopy cofibre is greater than the category of its target :

Corollary

For any map $\iota_X : A \to X$ with homotopy cofibre C such that $\operatorname{cat}(X) < \operatorname{cat}(C)$, we have $\operatorname{secat}(\iota_X) = \operatorname{cat}(X)$ and $\operatorname{relcat}(\iota_X) = \operatorname{cat}(C) = \operatorname{cat}(X) + 1$.

Example

The homotopy cofibre of the Hopf fibration $h: S^3 \to S^2$ is $\mathbb{C}P^2$ and we have $\operatorname{cat}(S^2) = 1 < \operatorname{cat}(\mathbb{C}P^2) = 2$. Thus $\operatorname{secat}(h) = 1$ and $\operatorname{relcat}(h) = 2$.

Proposition

Let $i\colon F\to E$ be the homotopy fibre of $f\colon E\to B.$ If f has a homotopy section then

$$\operatorname{cat}(E/F) = \operatorname{relcat}(i) = \operatorname{cat}(B) = \operatorname{secat}(i)$$

where E/F is the homotopy cofibre of *i*.

Example

The map $\operatorname{in}_1 = (\operatorname{id}_A, 0): A \to A \times B$ is the (homotopy) fibre of $\operatorname{pr}_2: A \times B \to B$, thus $\operatorname{cat} ((A \times B)/A) = \operatorname{secat} (\operatorname{in}_1) = \operatorname{relcat} (\operatorname{in}_1) = \operatorname{cat} (B).$

Theorem

Let be given a CW-complex A and a (q-1)-connected map $\iota_X : A \to X$. If dim $A < (\text{secat } \iota_X + 1)q - 1$ then $\text{secat } \iota_X = \text{relcat } \iota_X$.

Example

Let $\iota: S^r \to S^m$ with $r \ge m$. If r < 2m - 1, then relcat $(\iota) = \operatorname{secat}(\iota)$; this is 1 except for the identity for which it is 0. In particular this means that $\alpha_1: S^r \to S^r \bowtie_{S^m} S^r$ factorizes through ι up to homotopy.

Example

Let *h* be any of the Hopf maps $S^3 \to S^2$, $S^7 \to S^4$ and $S^{15} \to S^8$. Since they have a target of category 1 and a homotopy cofibre of category 2, we have secat h = 1 while relcat h = 2. This is a conterexample wich illustrates that the inequality in the hypothesis of the previous theorem is sharp, because in the three cases we have exactly dim A = (secat h + 1)q - 1.

Proposition

For any map $\iota_X \colon A \to X$, we have :

$$\operatorname{secat} g_i(\iota_X) = \lfloor \frac{\operatorname{secat} \iota_X}{i+1} \rfloor$$

where $\lfloor x \rfloor$ means the greatest integer less than or equal to x.

Example

If i_X a map with secat $(\iota_X) = 7$, the successive values of secat (g_i) for $0 \leq i \leq 7$ are

Proposition

Let $\iota_X : A \to X$ be any map. Consider the map $\alpha_i : A \to G_i(\iota_X)$ of the Ganea construction. We have :

 $\min\{i, \operatorname{secat}(\iota_X)\} \leqslant \operatorname{secat}(\alpha_i) \leqslant \operatorname{relcat}(\alpha_i) = \min\{i, \operatorname{relcat}(\iota_X)\}.$

Note that the first inequality can be strict, for instance for $\iota_*: A \to *$ and $\alpha_1: A \to A \bowtie A$ (join of A with itself), which is a null map, i.e. it factors through the zero object up to homotopy.

Conjecture

For any map $\iota_X \colon A \to X$, any $i \ge 0$, we have

secat (α_i) = relcat (α_i) = min $\{i, relcat (\iota_X)\}$.

Another more tricky conjecture is :

Conjecture

For any map $\iota_X : A \to X$, if ι_X has a homotopy retraction, then we have secat $(\iota_X) = \operatorname{relcat} (\iota_X)$.

Definition

Let X be any object. We define the *complexity* of X to be the sectional category of the diagonal map $\Delta: X \to X \times X$. Analogously, we define the *relative complexity* of X to be the relative category of the diagonal.

We use the following notations : $\operatorname{compl}(X) = \operatorname{secat}(\Delta)$ and $\operatorname{relcompl}(X) = \operatorname{relcat}(\Delta)$.

Actually complexity is the (normalized) topological complexity of Farber, and relative complexity is the monoidal complexity of Iwase and Sakai. A positive answer to our second conjecture would imply that $\operatorname{compl}(X) = \operatorname{relcompl}(X)$.

Definition

For any map $\iota_X : A \to X$, we define the *complexity* of ι_X (respectively: *relative complexity*) as the sectional category (respectively: relative category) of $\delta_1(\iota_X) : A \to X \times A$. where $\delta_1(\iota_X)$ is the whisker map of ι_X and id_A .

We write $\operatorname{compl}(\iota_X) = \operatorname{secat}(\delta_1(\iota_X))$. In particular $\operatorname{compl}(\operatorname{id}_X) = \operatorname{compl}(X)$, since $\delta_1(\operatorname{id}_X) \simeq \Delta$.

Proposition

For any object X and any map $\iota_X \colon A \to X$,

$\operatorname{cat}(X) \leq \operatorname{compl}(\iota_X) \leq \operatorname{compl}(X) \leq \operatorname{cat}(X \times X).$

Example

M. Farber has shown that the complexity of a sphere is 1 if the dimension is odd and 2 if the dimension is even.

Example

Consider the Hopf fibration $S^7 \to S^4$ and factor by the action of S^1 on S^7 to get $\iota : \mathbb{C}P^3 \to S^4$. The map $\delta_1 : \mathbb{C}P^3 \to S^4 \times \mathbb{C}P^3$ induces $\delta_1^* : H^*(S^4) \otimes H^*(\mathbb{C}P^3) \to H^*(\mathbb{C}P^3)$. We can find an element *a* of $H^*(S^4) \otimes H^*(\mathbb{C}P^3)$ such that $a \in \ker \delta_1^*$ and $a^2 \neq 0$, so by a theorem of A.S. Schwarz, compl $(\iota) \ge 2$. On the other hand by the previous proposition compl $(\iota) \le \operatorname{cat}(S^4) = 2$. So compl $(\iota) = 2$.

A case of equality

Corollary

Let be given any map $\iota_X : A \to X$ between CW-complexes, A connected and X (q-1)-connected. If dim $A < (\operatorname{compl}(\iota_X) + 1)q - 1$, then

 $\operatorname{cat}\left((A \times X)/A\right) \leqslant \operatorname{relcompl}\left(\iota_X\right) = \operatorname{compl}\left(\iota_X\right) \leqslant \operatorname{cat}\left(A \times X\right)$

where $(A \times X)/A$ is the homotopy cofibre of (id_A, ι_X) .

Example

Consider the Hopf fibration $S^7 \to S^4$ and factor by the action of S^1 on S^7 to get $\iota: \mathbb{C}P^3 \to S^4$. We have dim $\mathbb{C}P^3 = 6 < 3.4 - 1 = (\text{compl}(\iota) + 1).q - 1$, so relcompl $(\iota) = \text{compl}(\iota) = 2$.

Higher relative category

Definition

Let $\iota_X \colon A \to X$ be any map. Consider the homotopy commutative diagram :

where $\gamma_k^i \simeq \gamma_{i-1} \circ \gamma_{i-2} \circ \cdots \circ \gamma_{k+1} \circ \gamma_k$ (k < i) and $\gamma_k^k = \mathrm{id}_{G_k}$. The relative category of order k of ι_X is the least integer $n \ge k$ such that the map $g_k \colon G_k(\iota_X) \to X$ is relativement dominated by $\gamma_k^n \colon G_k(\iota_X) \to G_n(\iota_X)$ along $g_n \colon G_n(\iota_X) \to X$.

We denote this integer by $\operatorname{relcat}_k(\iota_X)$. When $A \simeq *$, we write $\operatorname{cat}_k X = \operatorname{relcat}_k(\iota_X)$.

Theorem

For any map $\iota_X \colon A \to X$, any k, we have :

 $k \leq \operatorname{relcat}_{k}(\iota_{X}) \leq \operatorname{relcat}_{k+1}(\iota_{X}) \leq \operatorname{relcat}_{k}(\iota_{X}) + 1.$

Remark

 $\operatorname{relcat}_k(\iota_X) = k$ if and only if $g_k(\iota_X)$ is a homotopy equivalence.

Remark

The inequalities of the previous theorem imply that if $\operatorname{relcat}(\iota_X) = n$ there can be at most n integers k such that $\operatorname{relcat}_k(\iota_X) = \operatorname{relcat}_{k+1}(\iota_X)$.

The last remark suggests the following definition :

Definition

For any map $\iota_X : A \to X$, define scratch (ι_X) as the number of integers k such that relcat_k $(\iota_X) = \operatorname{relcat}_{k+1} (\iota_X)$.

If $A \simeq *$, we write scratch $(X) = \operatorname{scratch}(\iota_X)$.

Example

We have $\operatorname{cat}_k S^n = k + 1$ for all k. So $\operatorname{scratch}(S^n) = 0$.

Example

Let X be the Eilenberg-Mac Lane space $K(\mathbb{Q}, 1)$. It is known that $\operatorname{cat}(X) = 2$. Because $G_1(X) \simeq \Sigma \Omega X$ has the homotopy type of a wedge of circles, we have $\operatorname{cat}_1(X) = 2$. And we have $\operatorname{cat}_k(X) = k + 1$ for $k \ge 1$. So $\operatorname{scratch}(X) = 1$.

http ://math.univ-lille1.fr/~doeraene/