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Ganea construction

For any map tx: A — X, the Ganea construction of 1x is the
following sequence of homotopy commutative diagrams (i > 0) :

A ose
Ni—1 \
a;
F,'_1 G, g—— X
Yi—1
Gi—l 8i—1

where the outside square is a homotopy pullback, the inside square
is a homotopy pushout and the map g;j: G; — X is the whisker map

induced by this homotopy pushout. The induction starts with
go=tx: A= X
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Geometric construction

If t.x: A— X is a closed cofibration (in which case 1x(A) = A),

Gi(ix) ~ { (wo,w1,...,w;) € (XIOU)*1 such that
wj(0) = wp(0) for all j and wi(1) € A for at least one k }

and
8i: G,' — X: (WQ,wl, R ,w,-) — wo(O).
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Domination

Consider the following diagram

Ly A

[5°¢ \

such that p oy ~ 1x.

1) If there is a homotopy section o of ¢, i.e. p o o =~ idx, we say
that tx is (simply) dominated by vy along .

2) If there is a homotopy section o of ¢ such that o otx ~ 1y, we
say that vx is relatively dominated by vy along .

We omit ‘along ' if the context is clear enough.
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Sectional category and Relative category

Definition

Let tx: A — X be any map.

1) The sectional category of tx is the least integer n such that the
map tx: A — X is dominated by a,: A — Gp(tx) along

gn: Gn(tx) — X.

2) The relative category of 1x is the least integer n such that the
map tx is relatively dominated by a, along g,.

We denote the sectional category by secat (1x), and the relative
category by relcat (tx). If A is the zero object *, we write
cat (X) = secat (1x) = relcat (1x).
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Section of G1(St) — St
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An equivalent characterisation

Proposition

We have secat (1x) < n (respectively: relcat (tx) < n) if and only
there exists a sequence of homotopy commutative diagrams :

A_Ci Z pi

I

Xi T> Xi+1

such that 1o = ida, p; o o; >~ ida, the square is a homotopy
pushout and vx is simply (respectively: relatively) dominated by ¢,.
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Dominated maps and sectional category

Assume we have a homotopy commutative diagram :

Ry
——Y

¢

><—W

—X
54

If ¢ has a homotopy section, then secat (1x) < secat (Ky).

In particular (with B = % and X = Y), for any map t4: A — X, we
have secat (1x) < cat (X)
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A homotopy pullback doesn’t increase categories

Assume we have a homotopy pullback :

B ™.y
A——sX
%

Then secat (ky) < secat (tx) and relcat (ky) < relcat (tx).
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A homotopy pushout cannot increase relative category

Assume we have a homotopy pushout :

2.4
E—

=2
<<~

_—
Ry

Then relcat (ky) < relcat (1x).

In particular (with B = %), for any map ta: A — X, if C is the
homotopy cofibre of tx, we have cat (C) < relcat (¢x)
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Sectional and relative categories differ at most by one

For any map vx: A — X, we have :

secat (tx) < relcat (1x) < secat (1x) + 1.
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Cube axiom

The deepest properties of the sectional and relative categories rely
on this ‘axiom’ which is satisfied in usual model categories.

Axiom (Cube axiom)

For any homotopy commutative diagram :

N

|

—> e
[ ] [ ] / J{
W

[ ] [ ]
if the bottom face is a homotopy pushout and the four vertical faces
are homotopy pullbacks, then the top face is a homotopy pushout.

J\
N

Jean-Paul Doeraene and Mohamed El Haouari Sectional category, Relative category and Topological comy



A particular case of inequality

The following corollary shows that the sectional and relative
categories of a map differ whenever the category of its homotopy
cofibre is greater than the category of its target :

For any map 1x: A — X with homotopy cofibre C such that
cat (X) < cat (C), we have secat (1x) = cat (X) and
relcat (tx) = cat (C) = cat (X) + 1.

The homotopy cofibre of the Hopf fibration h: S3 — S? is CP?
and we have cat (5%) = 1 < cat (CP?) = 2. Thus secat (h) = 1
and relcat (h) = 2.

€
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A particular case of equality

Proposition

Let i: F — E be the homotopy fibre of f: E — B. If f has a
homotopy section then

cat (E/F) = relcat (i) = cat (B) = secat (i)

where E /F is the homotopy cofibre of .

The map in; = (ida,0): A — A x B is the (homotopy) fibre of
pry: Ax B — B, thus
cat ((A x B)/A) = secat (iny) = relcat (iny) = cat (B).

.
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Another particular case of equality

Let be given a CW-complex A and a (q — 1)-connected map
tx: A— X. IfdimA < (secat tx +1)g — 1 then
secat tx = relcat tx.
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Let ¢c: S" = S™with r > m. f r <2m —1, then

relcat (v) = secat (¢); this is 1 except for the identity for which it is
0. In particular this means that a1 : S" — S" bagm S factorizes
through ¢ up to homotopy.

Let h be any of the Hopf maps S3 — 52, S — S* and S'® — S8,
Since they have a target of category 1 and a homotopy cofibre of
category 2, we have secat h = 1 while relcat h = 2. This is a
conterexample wich illustrates that the inequality in the hypothesis
of the previous theorem is sharp, because in the three cases we
have exactly dim A = (secat h+ 1)q — 1.
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Sectional category of g;

For any map 1x: A — X, we have :

secat tx
— |

secat gi(Lx) = | F

where | x| means the greatest integer less than or equal to x.

If ix a map with secat (tx) = 7, the successive values of secat (g;)
for 0 <7 <7 are

73 21 11 1 0
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Sectionnal and relative categories of «;

Proposition

Let 1x: A — X be any map. Consider the map a;j: A — Gi(tx) of
the Ganea construction. We have :

min{/,secat (tx)} < secat (a;) < relcat (a;) = min{i, relcat (vx)}.

Note that the first inequality can be strict, for instance for
tv: A= xand a;: A— A A (join of A with itself), which is a
null map, i.e. it factors through the zero object up to homotopy.
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For any map 1x: A— X, any i > 0, we have

secat (o) = relcat (a;) = min{/, relcat (vx)}.

Another more tricky conjecture is :

For any map tx: A — X, if Lx has a homotopy retraction, then we
have secat (1x) = relcat (¢tx).
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Complexity of a space

Definition

Let X be any object.

We define the complexity of X to be the sectional category of the
diagonal map A: X — X x X.

Analogously, we define the relative complexity of X to be the
relative category of the diagonal.

We use the following notations : compl (X) = secat (A) and
relcompl (X) = relcat (A).

Actually complexity is the (normalized) topological complexity of
Farber, and relative complexity is the monoidal complexity of Iwase
and Sakai. A positive answer to our second conjecture would imply
that compl (X) = relcompl (X).
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Complexity of a map

Definition

For any map tx: A — X, we define the complexity of vx
(respectively: relative complexity) as the sectional category
(respectively: relative category) of d1(tx): A — X x A. where
91(tx) is the whisker map of tx and ida.

We write compl (tx) = secat (d1(tx))-
In particular compl (idx) = compl (X), since d;(idx) ~ A.
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Inequalities for complexity

Proposition

For any object X and any map 1x: A — X,

cat (X) < compl (ex) < compl (X) < cat (X x X).
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M. Farber has shown that the complexity of a sphere is 1 if the
dimension is odd and 2 if the dimension is even.

Consider the Hopf fibration S” — S* and factor by the action of S!
on S” to get 1: CP® — S* The map 61: CP3? — S* x CP? induces
51 H*(S*) ® H*(CP3) — H*(CP3). We can find an element a of
H*(S*) ® H*(CP?) such that a € ker 5} and a® # 0, so by a
theorem of A.S. Schwarz, compl (¢) > 2. On the other hand by the
previous proposition compl (¢) < cat (5*) = 2. So compl (1) = 2.
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A case of equality

Let be given any map vx: A — X between CW-complexes, A
connected and X (g — 1)-connected. If
dim A < (compl (tx) +1)g — 1, then

cat ((A x X)/A) < relcompl (1x) = compl (tx) < cat (A x X)

where (A x X)/A is the homotopy cofibre of (ida, tx).

v

Consider the Hopf fibration S” — S* and factor by the action of S*
on S7 to get 1: CP3 — S*. We have

dimCP3® =6 < 3.4 —1= (compl (¢) +1).g — 1, so

relcompl (¢) = compl () = 2.
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Higher relative category

Let tx: A — X be any map. Consider the homotopy commutative

diagram :

Gr(tx) &
.

where ")/,’( >~ Y1 97j—20 O Ykt1 O Vk (k < I) and 7;(( = ide.
The relative category of order k of 1x is the least integer n > k
such that the map gx: Gk(tx) — X is relativement dominated by

Vi i Gi(ex) = Gn(ex) along gn: Gp(ix) — X.

Gi(tx)

X

We denote this integer by relcaty (tx). When A ~ %, we write
catg X = relcaty (tx).
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Inequalities

For any map vx: A — X, any k, we have :

k < relcaty (1x) < releatyy (1x) < relcaty (ex) + 1.
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relcaty (tx) = k if and only if g(1x) is a homotopy equivalence.

The inequalities of the previous theorem imply that if
relcat (tx) = n there can be at most n integers k such that
relcaty (1x) = relcatyig (tx).
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The last remark suggests the following definition :

Definition

For any map tx: A — X, define scratch (vx) as the number of
integers k such that relcaty (1x) = relcatgi1 (tx)-

If A~ %, we write scratch (X) = scratch (¢x).
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We have caty S” = k + 1 for all k. So scratch (S") = 0.

Let X be the Eilenberg-Mac Lane space K(Q, 1). It is known that
cat (X) = 2. Because G1(X) ~ QX has the homotopy type of a
wedge of circles, we have cat; (X) = 2. And we have

caty (X) = k+1 for k > 1. So scratch (X) = 1.
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