On the topological complexity of manifolds with abelian fundamental group

Lucile Vandembroucq Centro de Matemática - Universidade do Minho - Portugal *joint work with* Daniel C. Cohen

17/3/2023

X - space of all possible positions of a mechanical system.

Motion from position x_0 to position x_1 = path in X from x_0 to x_1 .

A motion planning algorithm is a section $s : X \times X \to X^{[0,1]}$ of $ev_{0,1} : X^{[0,1]} \to X \times X, \quad \gamma \mapsto (\gamma(0), \gamma(1))$

X - space of all possible positions of a mechanical system.

Motion from position x_0 to position x_1 = path in X from x_0 to x_1 .

A motion planning algorithm is a section $s: X \times X \rightarrow X^{[0,1]}$ of

$$ev_{0,1}: X^{[0,1]} \to X \times X, \quad \gamma \mapsto (\gamma(0), \gamma(1))$$

X - space of all possible positions of a mechanical system.

Motion from position x_0 to position x_1 = path in X from x_0 to x_1 .

A motion planning algorithm is a section $s: X \times X \rightarrow X^{[0,1]}$ of

$$ev_{0,1}: X^{[0,1]} \to X \times X, \quad \gamma \mapsto (\gamma(0), \gamma(1))$$

X - space of all possible positions of a mechanical system.

Motion from position x_0 to position x_1 = path in X from x_0 to x_1 .

A motion planning algorithm is a section $s: X \times X \to X^{[0,1]}$ of

 $ev_{0,1}: X^{[0,1]} \to X \times X, \quad \gamma \mapsto (\gamma(0), \gamma(1))$

That is, s(x, y) is a path from x to y.

There is a global **continuous** section iff X is contractible.

X - space of all possible positions of a mechanical system.

Motion from position x_0 to position x_1 = path in X from x_0 to x_1 .

A motion planning algorithm is a section $s: X \times X \rightarrow X^{[0,1]}$ of

$$ev_{0,1}: X^{[0,1]} \to X \times X, \quad \gamma \mapsto (\gamma(0), \gamma(1))$$

X - space of all possible positions of a mechanical system.

Motion from position x_0 to position x_1 = path in X from x_0 to x_1 .

A motion planning algorithm is a section $s: X \times X \rightarrow X^{[0,1]}$ of

$$ev_{0,1}: X^{[0,1]} \to X \times X, \quad \gamma \mapsto (\gamma(0), \gamma(1))$$

Let *X* be a path-connected space (CW-complex, manifold).

Definition. TC(X) is the least integer *n* s.t. $X \times X$ can be covered by n + 1 open sets on each of which $ev_{0,1}$ admits a local **continuous** section.

• TC is a homotopy invariant.

• TC(X) = 0 iff X is contractible, $TC(S^{2k+1}) = 1$, $TC(S^{2k}) = 2$.

• $\operatorname{TC}(X) \leq 2 \operatorname{dim}(X)$.

We say that TC(X) is **maximal** when $TC(X) = 2 \dim(X)$. This only can happen when $\pi_1(X) \neq 0$ because

$$\pi_1(X) = \mathbf{0} \Rightarrow \quad \mathrm{TC}(X) \leqslant \dim(X).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

Let *X* be a path-connected space (CW-complex, manifold).

Definition. TC(X) is the least integer *n* s.t. $X \times X$ can be covered by n + 1 open sets on each of which $ev_{0,1}$ admits a local **continuous** section.

• TC is a homotopy invariant.

• TC(X) = 0 iff X is contractible, $TC(S^{2k+1}) = 1$, $TC(S^{2k}) = 2$.

• $\operatorname{TC}(X) \leq 2 \operatorname{dim}(X)$.

We say that TC(X) is **maximal** when $TC(X) = 2 \dim(X)$. This only can happen when $\pi_1(X) \neq 0$ because

$$\pi_1(X) = \mathbf{0} \Rightarrow \operatorname{TC}(X) \leq \dim(X).$$

Let *X* be a path-connected space (CW-complex, manifold).

Definition. TC(X) is the least integer *n* s.t. $X \times X$ can be covered by n + 1 open sets on each of which $ev_{0,1}$ admits a local **continuous** section.

- TC is a homotopy invariant.
- TC(X) = 0 iff X is contractible, $TC(S^{2k+1}) = 1$, $TC(S^{2k}) = 2$.
- $\operatorname{TC}(X) \leq 2 \operatorname{dim}(X)$.

We say that TC(X) is **maximal** when $TC(X) = 2 \dim(X)$. This only can happen when $\pi_1(X) \neq 0$ because

$$\pi_1(X) = \mathbf{0} \Rightarrow \quad \mathrm{TC}(X) \leqslant \dim(X).$$

Let *X* be a path-connected space (CW-complex, manifold).

Definition. TC(X) is the least integer *n* s.t. $X \times X$ can be covered by n + 1 open sets on each of which $ev_{0,1}$ admits a local **continuous** section.

• TC is a homotopy invariant.

• TC(X) = 0 iff X is contractible, $TC(S^{2k+1}) = 1$, $TC(S^{2k}) = 2$.

• $\operatorname{TC}(X) \leq 2 \operatorname{dim}(X)$.

We say that TC(X) is **maximal** when $TC(X) = 2 \dim(X)$. This only can happen when $\pi_1(X) \neq 0$ because

$$\pi_1(X) = \mathbf{0} \Rightarrow \operatorname{TC}(X) \leq \dim(X).$$

Let *X* be a path-connected space (CW-complex, manifold).

Definition. TC(X) is the least integer *n* s.t. $X \times X$ can be covered by n + 1 open sets on each of which $ev_{0,1}$ admits a local **continuous** section.

- TC is a homotopy invariant.
- TC(X) = 0 iff X is contractible, $TC(S^{2k+1}) = 1$, $TC(S^{2k}) = 2$.
- $\operatorname{TC}(X) \leq 2 \operatorname{dim}(X)$.

We say that TC(X) is **maximal** when $TC(X) = 2 \dim(X)$.

 $\pi_1(X) = \mathbf{0} \Rightarrow \operatorname{TC}(X) \leq \dim(X).$

Let *X* be a path-connected space (CW-complex, manifold).

Definition. TC(X) is the least integer *n* s.t. $X \times X$ can be covered by n + 1 open sets on each of which $ev_{0,1}$ admits a local **continuous** section.

- TC is a homotopy invariant.
- TC(X) = 0 iff X is contractible, $TC(S^{2k+1}) = 1$, $TC(S^{2k}) = 2$.
- $TC(X) \leq 2 \dim(X)$.

We say that TC(X) is **maximal** when $TC(X) = 2 \dim(X)$. This only can happen when $\pi_1(X) \neq 0$ because

$$\pi_1(X) = \mathbf{0} \Rightarrow \operatorname{TC}(X) \leq \dim(X).$$

Orientable (closed) surfaces

Theorem. (Farber, 2003)

• $TC(S^2) = 2$

•
$$TC(T) = 2$$

• for
$$g \ge 2$$
, TC $(T_g) = 4$.

Important tool: $TC(X) \ge zcl_k(X)$ =maximal length of a nontrivial product in the kernel of the cup-product

$$\cup: H^*(X; \Bbbk) \otimes H^*(X; \Bbbk) \to H^*(X; \Bbbk)$$

Orientable (closed) surfaces

 S^2 $T = S^1 \times S^1$ torus with g holes $T_g = \underbrace{T \# T \# \cdots \# T}_{g}$.

Theorem. (Farber, 2003)

- TC(*S*²) = 2
- TC(*T*) = 2
- for $g \ge 2$, TC $(T_g) = 4$.

Important tool: $TC(X) \ge zcl_k(X)$ =maximal length of a nontrivial product in the kernel of the cup-product

$$\cup: H^*(X; \Bbbk) \otimes H^*(X; \Bbbk) \to H^*(X; \Bbbk)$$

Orientable (closed) surfaces

 S^2 $T = S^1 \times S^1$ torus with g holes $T_g = \underbrace{T \# T \# \cdots \# T}_{g}$.

Theorem. (Farber, 2003)

- TC(*S*²) = 2
- TC(*T*) = 2
- for $g \ge 2$, TC $(T_g) = 4$.

Important tool: $TC(X) \ge zcl_k(X)$ =maximal length of a nontrivial product in the kernel of the cup-product

$$\cup: H^*(X; \Bbbk) \otimes H^*(X; \Bbbk) \to H^*(X; \Bbbk)$$

$$\mathcal{K} = \mathbb{RP}^2 \# \mathbb{RP}^2, \qquad \mathcal{N}_g = \underbrace{\mathbb{RP}^2 \# \cdots \# \mathbb{RP}^2}_{g}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Theorem.(Farber, Tabachnikov, Yuzvinsky, 2003) $TC(\mathbb{RP}^2) = 3$

Theorem.(Dranishnikov, 2016) For $g \ge 4$, $TC(N_g) = 4$.

$$K = \mathbb{RP}^2 \# \mathbb{RP}^2, \qquad N_g = \underbrace{\mathbb{RP}^2 \# \cdots \# \mathbb{RP}^2}_{g}$$

(日) (日) (日) (日) (日) (日) (日) (日)

Theorem.(Farber, Tabachnikov, Yuzvinsky, 2003) $TC(\mathbb{RP}^2) = 3$

Theorem.(Dranishnikov, 2016) For $g \ge 4$, $TC(N_g) = 4$.

$$\mathcal{K} = \mathbb{RP}^2 \# \mathbb{RP}^2, \qquad \mathcal{N}_g = \underbrace{\mathbb{RP}^2 \# \cdots \# \mathbb{RP}^2}_{g}$$

Theorem.(Farber, Tabachnikov, Yuzvinsky, 2003) $TC(\mathbb{RP}^2) = 3$

Theorem.(Dranishnikov, 2016) For $g \ge 4$, TC(N_g) = 4.

$$K = \mathbb{RP}^2 \# \mathbb{RP}^2, \qquad N_g = \underbrace{\mathbb{RP}^2 \# \cdots \# \mathbb{RP}^2}_{g}$$

Theorem.(Farber, Tabachnikov, Yuzvinsky, 2003) $TC(\mathbb{RP}^2) = 3$

Theorem.(Dranishnikov, 2016) For $g \ge 4$, TC(N_g) = 4.

In analogy to $N_g = \mathbb{RP}^2 \# \cdots \# \mathbb{RP}^2$ (*g* copies), we consider $\mathcal{P}_g^n := \underbrace{\mathbb{RP}^n \# \cdots \# \mathbb{RP}^n}_{g \text{ copies}}$

Theorem. (Cohen-V., 2018) For $n \ge 2$ and $g \ge 2$, $TC(\mathcal{P}_q^n) = 2n$.

Case $g = 1, \mathcal{P}_1^n = \mathbb{RP}^n$ (Farber, Tabachnikov, Yuzvinsky - 2003)

Theorem. (FTY)

• For n = 1, 3 or 7, $TC(\mathbb{RP}^n) = n$.

 For n ≠ 1,3,7, TC(ℝPⁿ) is the least integer k such that there exists an immersion of ℝPⁿ in ℝ^k.

(日) (日) (日) (日) (日) (日) (日) (日)

In analogy to $N_g = \mathbb{RP}^2 \# \cdots \# \mathbb{RP}^2$ (*g* copies), we consider $\mathcal{P}_g^n := \underbrace{\mathbb{RP}^n \# \cdots \# \mathbb{RP}^n}_{g \text{ copies}}$

Theorem. (Cohen-V., 2018) For $n \ge 2$ and $g \ge 2$, $\operatorname{TC}(\mathcal{P}_g^n) = 2n$.

Case $g=1, \mathcal{P}_1^n=\mathbb{RP}^n$ (Farber, Tabachnikov, Yuzvinsky - 2003)

Theorem. (FTY)

- For n = 1, 3 or 7, $TC(\mathbb{RP}^n) = n$.
- For n ≠ 1,3,7, TC(ℝPⁿ) is the least integer k such that there exists an immersion of ℝPⁿ in ℝ^k.

In analogy to $N_g = \mathbb{RP}^2 \# \cdots \# \mathbb{RP}^2$ (*g* copies), we consider $\mathcal{P}_g^n := \underbrace{\mathbb{RP}^n \# \cdots \# \mathbb{RP}^n}_{g \text{ copies}}$

Theorem. (Cohen-V., 2018) For $n \ge 2$ and $g \ge 2$, $\operatorname{TC}(\mathcal{P}_g^n) = 2n$.

Case $g = 1, \mathcal{P}_1^n = \mathbb{RP}^n$ (Farber, Tabachnikov, Yuzvinsky - 2003)

Theorem. (FTY)

• For n = 1, 3 or 7, $TC(\mathbb{RP}^n) = n$.

 For n ≠ 1,3,7, TC(ℝPⁿ) is the least integer k such that there exists an immersion of ℝPⁿ in ℝ^k.

In analogy to $N_g = \mathbb{RP}^2 \# \cdots \# \mathbb{RP}^2$ (*g* copies), we consider $\mathcal{P}_g^n := \underbrace{\mathbb{RP}^n \# \cdots \# \mathbb{RP}^n}_{g \text{ copies}}$

Theorem. (Cohen-V., 2018) For $n \ge 2$ and $g \ge 2$, $\operatorname{TC}(\mathcal{P}_g^n) = 2n$.

Case $g = 1, \mathcal{P}_1^n = \mathbb{RP}^n$ (Farber, Tabachnikov, Yuzvinsky - 2003)

Theorem. (FTY)

• For n = 1, 3 or 7, $TC(\mathbb{RP}^n) = n$.

 For n ≠ 1,3,7, TC(ℝPⁿ) is the least integer k such that there exists an immersion of ℝPⁿ in ℝ^k.

In analogy to $N_g = \mathbb{RP}^2 \# \cdots \# \mathbb{RP}^2$ (*g* copies), we consider $\mathcal{P}_g^n := \underbrace{\mathbb{RP}^n \# \cdots \# \mathbb{RP}^n}_{g \text{ copies}}$

Theorem. (Cohen-V., 2018) For $n \ge 2$ and $g \ge 2$, $\operatorname{TC}(\mathcal{P}_g^n) = 2n$.

Case $g = 1, \mathcal{P}_1^n = \mathbb{RP}^n$ (Farber, Tabachnikov, Yuzvinsky - 2003)

Theorem. (FTY)

- For n = 1, 3 or 7, $TC(\mathbb{RP}^n) = n$.
- For n ≠ 1,3,7, TC(ℝPⁿ) is the least integer k such that there exists an immersion of ℝPⁿ in ℝ^k.

In analogy to $N_g = \mathbb{RP}^2 \# \cdots \# \mathbb{RP}^2$ (*g* copies), we consider $\mathcal{P}_g^n := \underbrace{\mathbb{RP}^n \# \cdots \# \mathbb{RP}^n}_{g \text{ copies}}$

Theorem. (Cohen-V., 2018) For $n \ge 2$ and $g \ge 2$, $\operatorname{TC}(\mathcal{P}_g^n) = 2n$.

Case $g = 1, \mathcal{P}_1^n = \mathbb{RP}^n$ (Farber, Tabachnikov, Yuzvinsky - 2003)

Theorem. (FTY)

- For n = 1, 3 or 7, $TC(\mathbb{RP}^n) = n$.
- For n ≠ 1,3,7, TC(ℝPⁿ) is the least integer k such that there exists an immersion of ℝPⁿ in ℝ^k.

TC of spaces with small fundamental group

Theorem. (Costa-Farber, 2010) X finite CW-complex of dim n.

- **1** If $\pi_1(X) = \mathbb{Z}_2$, then TC(X) < 2n.
- 2 If $\pi_1(X) = \mathbb{Z}_3$ then TC(X) < 2n when either *n* is odd or *n* is even and the 3-adic expansion of n/2 contains at least one digit 2.

The condition in the even dimensional case of (2) is sharp:

For X = 6-dimensional skeleton of the lens space $L_3^7 = S^7 / \mathbb{Z}_3$,

$$\pi_1(X) = \mathbb{Z}_3$$
 and $TC(X) = 2 \dim(X)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

Note that X is not a closed manifold.

Theorem. (Costa-Farber, 2010) X finite CW-complex of dim n.

- **1** If $\pi_1(X) = \mathbb{Z}_2$, then TC(X) < 2n.
- 2 If $\pi_1(X) = \mathbb{Z}_3$ then TC(X) < 2n when either *n* is odd or *n* is even and the 3-adic expansion of n/2 contains at least one digit 2.

The condition in the even dimensional case of (2) is sharp:

For X = 6-dimensional skeleton of the lens space $L_3^7 = S^7 / \mathbb{Z}_3$,

$$\pi_1(X) = \mathbb{Z}_3$$
 and $TC(X) = 2\dim(X)$

Note that *X* is not a closed manifold.

Theorem. Let *M* be an *n*-dimensional **orientable** manifold with **abelian** fundamental group $\pi_1(M)$ of one of the following forms:

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

① \mathbb{Z}^r with either *n* odd or *n* even such that r < 2n

- 2 $\mathbb{Z}^r \times \mathbb{Z}_{p^a}$ with *p* prime and r < n
- (a) $\mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b} \times \mathbb{Z}_{p^c}$
- **(5)** $\mathbb{Z}^r \times (\mathbb{Z}_2)^s$ with either *n* odd or *n* even such that r < 2n

Theorem. Let *M* be an *n*-dimensional **orientable** manifold with **abelian** fundamental group $\pi_1(M)$ of one of the following forms:

1 \mathbb{Z}^r with either *n* odd or *n* even such that r < 2n

- ② $\mathbb{Z}^r \times \mathbb{Z}_{p^a}$ with *p* prime and r < n

(a) $\mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b} \times \mathbb{Z}_{p^c}$

(5) $\mathbb{Z}^r \times (\mathbb{Z}_2)^s$ with either *n* odd or *n* even such that r < 2n

Theorem. Let *M* be an *n*-dimensional **orientable** manifold with **abelian** fundamental group $\pi_1(M)$ of one of the following forms:

1 \mathbb{Z}^r with either *n* odd or *n* even such that r < 2n

- 2 $\mathbb{Z}^r \times \mathbb{Z}_{p^a}$ with *p* prime and r < n

() $\mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b} \times \mathbb{Z}_{p^c}$

(3) $\mathbb{Z}^r \times (\mathbb{Z}_2)^s$ with either *n* odd or *n* even such that r < 2n

Theorem. Let *M* be an *n*-dimensional **orientable** manifold with **abelian** fundamental group $\pi_1(M)$ of one of the following forms:

1 \mathbb{Z}^r with either *n* odd or *n* even such that r < 2n

- 2 $\mathbb{Z}^r \times \mathbb{Z}_{p^a}$ with *p* prime and r < n
- **③** $\mathbb{Z}^r \times \mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b}$ and $r \leq 1$

(a) $\mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b} \times \mathbb{Z}_{p^c}$

5 $\mathbb{Z}^r \times (\mathbb{Z}_2)^s$ with either *n* odd or *n* even such that r < 2n

Theorem. Let *M* be an *n*-dimensional **orientable** manifold with **abelian** fundamental group $\pi_1(M)$ of one of the following forms:

() \mathbb{Z}^r with either *n* odd or *n* even such that r < 2n

- 2 $\mathbb{Z}^r \times \mathbb{Z}_{p^a}$ with *p* prime and r < n
- \bigcirc $\mathbb{Z}^r \times \mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b}$ and $r \leq 1$

5 $\mathbb{Z}^r \times (\mathbb{Z}_2)^s$ with either *n* odd or *n* even such that r < 2n

Theorem. Let *M* be an *n*-dimensional **orientable** manifold with **abelian** fundamental group $\pi_1(M)$ of one of the following forms:

1 \mathbb{Z}^r with either *n* odd or *n* even such that r < 2n

2
$$\mathbb{Z}^r \times \mathbb{Z}_{p^a}$$
 with *p* prime and $r < n$

$${}^{\textcircled{0}}$$
 $\mathbb{Z}^r imes\mathbb{Z}_{p^a} imes\mathbb{Z}_{p^b}$ and $r\leqslant 1$

5 $\mathbb{Z}^r \times (\mathbb{Z}_2)^s$ with either *n* odd or *n* even such that r < 2n

Building on works of Costa-Farber and Dranishnikov we prove:

Proposition. If $\pi_1(M) = G$ is abelian then

 $\operatorname{TC}(M) < 2n \Leftrightarrow \alpha_*(\mathbf{m} \times \mathbf{m}) = 0 \text{ in } H_{2n}(BG; \widetilde{\mathbb{Z}}) = H_{2n}(G; \widetilde{\mathbb{Z}}).$

• α_* is induced by $\alpha: G \times G \to G, \quad \alpha(a,b) = ab^{-1}.$

•
$$\mathbf{m} = \gamma_*([M]) \in H_n(BG; \widetilde{\mathbb{Z}})$$
 where:

• $\gamma : M \to BG$ is a map s.t $\pi_1(\gamma) : \pi_1(M) \xrightarrow{\cong} \pi_1(BG) = G$.

• \mathbb{Z} : \mathbb{Z} with the action of *G* given by the orientation character $w : G = \pi_1(M) \to \{\pm 1\}.$

Building on works of Costa-Farber and Dranishnikov we prove:

Proposition. If $\pi_1(M) = G$ is abelian then

 $\operatorname{TC}(M) < 2n \Leftrightarrow \alpha_*(\mathbf{m} \times \mathbf{m}) = 0 \quad \text{in } H_{2n}(BG; \widetilde{\mathbb{Z}}) = H_{2n}(G; \widetilde{\mathbb{Z}}).$

• α_* is induced by $\alpha: G \times G \to G, \quad \alpha(a, b) = ab^{-1}.$

• $\mathbf{m} = \gamma_*([M]) \in H_n(BG; \widetilde{\mathbb{Z}})$ where:

• $\gamma : M \to BG$ is a map s.t $\pi_1(\gamma) : \pi_1(M) \xrightarrow{\cong} \pi_1(BG) = G$.

• $\widetilde{\mathbb{Z}}$: \mathbb{Z} with the action of *G* given by the orientation character $w: G = \pi_1(M) \to \{\pm 1\}.$

Building on works of Costa-Farber and Dranishnikov we prove:

Proposition. If $\pi_1(M) = G$ is abelian then

 $\operatorname{TC}(M) < 2n \Leftrightarrow \alpha_*(\mathbf{m} \times \mathbf{m}) = 0 \quad \text{in } H_{2n}(BG; \widetilde{\mathbb{Z}}) = H_{2n}(G; \widetilde{\mathbb{Z}}).$

• α_* is induced by $\alpha: G \times G \to G, \quad \alpha(a,b) = ab^{-1}.$

•
$$\mathbf{m} = \gamma_*([\mathbf{M}]) \in H_n(\mathbf{BG}; \widetilde{\mathbb{Z}})$$
 where:

• $\gamma: M \to BG$ is a map s.t $\pi_1(\gamma): \pi_1(M) \xrightarrow{\cong} \pi_1(BG) = G$.

• \mathbb{Z} : \mathbb{Z} with the action of *G* given by the orientation character $w : G = \pi_1(M) \to \{\pm 1\}.$

Building on works of Costa-Farber and Dranishnikov we prove:

Proposition. If $\pi_1(M) = G$ is abelian then

 $\operatorname{TC}(M) < 2n \Leftrightarrow \alpha_*(\mathbf{m} \times \mathbf{m}) = 0 \text{ in } H_{2n}(BG; \widetilde{\mathbb{Z}}) = H_{2n}(G; \widetilde{\mathbb{Z}}).$

• α_* is induced by $\alpha: G \times G \to G, \quad \alpha(a, b) = ab^{-1}.$

•
$$\mathbf{m} = \gamma_*([M]) \in H_n(BG; \widetilde{\mathbb{Z}})$$
 where:

• $\gamma : M \to BG$ is a map s.t $\pi_1(\gamma) : \pi_1(M) \xrightarrow{\cong} \pi_1(BG) = G$.

• $\widetilde{\mathbb{Z}}$: \mathbb{Z} with the action of *G* given by the orientation character $w : G = \pi_1(M) \rightarrow \{\pm 1\}.$

Building on works of Costa-Farber and Dranishnikov we prove:

Proposition. If $\pi_1(M) = G$ is abelian then

 $\operatorname{TC}(M) < 2n \Leftrightarrow \alpha_*(\mathbf{m} \times \mathbf{m}) = 0 \quad \text{in } H_{2n}(BG; \widetilde{\mathbb{Z}}) = H_{2n}(G; \widetilde{\mathbb{Z}}).$

• α_* is induced by $\alpha : \mathbf{G} \times \mathbf{G} \to \mathbf{G}, \quad \alpha(\mathbf{a}, \mathbf{b}) = \mathbf{a}\mathbf{b}^{-1}.$

•
$$\mathbf{m} = \gamma_*([M]) \in H_n(BG; \widetilde{\mathbb{Z}})$$
 where:

• $\gamma : M \to BG$ is a map s.t $\pi_1(\gamma) : \pi_1(M) \xrightarrow{\cong} \pi_1(BG) = G$.

- $\widetilde{\mathbb{Z}}$: \mathbb{Z} with the action of *G* given by the orientation character $w : G = \pi_1(M) \rightarrow \{\pm 1\}.$
- $[M] \in H_n(M; \widetilde{\mathbb{Z}}) \cong \mathbb{Z}$ is the (twisted) fundamental class of M.

G finitely generated abelian group with action on $\tilde{\mathbb{Z}}$.

 $H_*(BG;\widetilde{\mathbb{Z}})$ is a Pontrjagin algebra with a strictly anti-commutative product \wedge

$\label{eq:constraint} \boldsymbol{c} \wedge \boldsymbol{d} = (-1)^{|\boldsymbol{c}||\boldsymbol{d}|} \boldsymbol{d} \wedge \boldsymbol{c} \quad \text{with } \boldsymbol{c} \wedge \boldsymbol{c} = 0 \text{ when } |\boldsymbol{c}| \text{ is odd.}$

Considering the morphism induced by the inversion of G

$$I: H_*(BG; \widetilde{\mathbb{Z}}) \to H_*(BG; \widetilde{\mathbb{Z}})$$

we have

$$\alpha_*(\mathbf{C}\times\mathbf{C})=\mathbf{C}\wedge l(\mathbf{C}).$$

If $I(\mathbf{c}) = \pm \mathbf{c}$ and $|\mathbf{c}|$ is odd then $\alpha_*(\mathbf{c} \times \mathbf{c}) = \pm \mathbf{c} \wedge \mathbf{c} = \mathbf{0}$.

(ロ)、(型)、(E)、(E)、 E、のQの

G finitely generated abelian group with action on $\tilde{\mathbb{Z}}$.

 $H_*(BG; \widetilde{\mathbb{Z}})$ is a Pontrjagin algebra with a strictly anti-commutative product \land

$$\mathbf{c} \wedge \mathbf{d} = (-1)^{|\mathbf{c}||\mathbf{d}|} \mathbf{d} \wedge \mathbf{c}$$
 with $\mathbf{c} \wedge \mathbf{c} = 0$ when $|\mathbf{c}|$ is odd.

Considering the morphism induced by the inversion of G

$$I: H_*(BG; \widetilde{\mathbb{Z}}) \to H_*(BG; \widetilde{\mathbb{Z}})$$

we have

$$\alpha_*(\mathbf{C}\times\mathbf{C})=\mathbf{C}\wedge I(\mathbf{C}).$$

If $I(\mathbf{c}) = \pm \mathbf{c}$ and $|\mathbf{c}|$ is odd then $\alpha_*(\mathbf{c} \times \mathbf{c}) = \pm \mathbf{c} \wedge \mathbf{c} = \mathbf{0}$.

Proposition. For $\mathbf{c} \in H_n(BG; \widetilde{\mathbb{Z}})$ with $n \ge 2$, we have $\alpha_*(\mathbf{c} \times \mathbf{c}) = 0$ when

• the action of G on $\widetilde{\mathbb{Z}}$ is not trivial

- the action of G on $\widetilde{\mathbb{Z}}$ is trivial and G is of one of the following forms.
 - $\mathbb{D} \mathbb{Z}^r$ with either *n* odd or *n* even such that r < 2n
 - $\bigcirc \ \mathbb{Z}^r imes \mathbb{Z}_{p^a}$ with p prime and r < n
 - 3 $\mathbb{Z}^r \times \mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b}$ with p with $r \leq 1$
 - $2 \mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b} \times \mathbb{Z}_{p^c}$
 - $\ \, \boxed{ } \ \, \mathbb{Z}^r \times (\mathbb{Z}_2)^s \text{ with either } n \text{ odd or } n \text{ even such that } r < 2n$

All the conditions are sharp.

In (2), the condition r < n is sharp because for $G = \mathbb{Z}^7 \times \mathbb{Z}_3$, there exists $\mathbf{c} \in H_7(BG; \widetilde{\mathbb{Z}})$ such that $\alpha_*(\mathbf{c} \times \mathbf{c}) \neq 0$.

(日) (日) (日) (日) (日) (日) (日) (日)

Proposition. For $\mathbf{c} \in H_n(BG; \widetilde{\mathbb{Z}})$ with $n \ge 2$, we have $\alpha_*(\mathbf{c} \times \mathbf{c}) = 0$ when

- the action of G on $\widetilde{\mathbb{Z}}$ is not trivial
- the action of G on $\widetilde{\mathbb{Z}}$ is trivial and G is of one of the following forms.

2^r with either *n* odd or *n* even such that *r* < 2*n*2^r × Z_{p^a} with *p* prime and *r* < *n*2^r × Z_{p^a} × Z_{p^b} with *p* with *r* ≤ 1
2_{p^a} × Z_{p^b} × Z_{p^c}
2^r × (Z₂)^s with either *n* odd or *n* even such that *r* < 2*n*

All the conditions are sharp.

In (2), the condition r < n is sharp because for $G = \mathbb{Z}^7 \times \mathbb{Z}_3$, there exists $\mathbf{c} \in H_7(BG; \widetilde{\mathbb{Z}})$ such that $\alpha_*(\mathbf{c} \times \mathbf{c}) \neq 0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proposition. For $\mathbf{c} \in H_n(BG; \widetilde{\mathbb{Z}})$ with $n \ge 2$, we have $\alpha_*(\mathbf{c} \times \mathbf{c}) = 0$ when

- the action of G on $\widetilde{\mathbb{Z}}$ is not trivial
- the action of G on $\widetilde{\mathbb{Z}}$ is trivial and G is of one of the following forms.

All the conditions are sharp.

In (2), the condition r < n is sharp because for $G = \mathbb{Z}^7 \times \mathbb{Z}_3$, there exists $\mathbf{c} \in H_7(BG; \mathbb{Z})$ such that $\alpha_*(\mathbf{c} \times \mathbf{c}) \neq 0$.

(日) (日) (日) (日) (日) (日) (日) (日)

$$\boldsymbol{c} = [(\boldsymbol{\mathcal{S}}^1)^7] + [\boldsymbol{\mathcal{L}}_3^7] \in \boldsymbol{\mathcal{H}}_7(\mathbb{Z}^7 \times \mathbb{Z}_3) = \boldsymbol{\mathcal{H}}_7((\boldsymbol{\mathcal{S}}^1)^7 \times \boldsymbol{\mathcal{L}}_3^\infty)$$

 $\phi: \mathcal{N} = (S^1)^7 \# L_3^7 \xrightarrow{\text{pinch}} (S^1)^7 \vee L_3^7 \xrightarrow{} (S^1)^7 \times L_3^\infty = BG$

•
$$\phi_*([N]) = \mathbf{c}$$
 but $\pi_1(N) = \mathbb{Z}^7 * \mathbb{Z}_3$ is not abelian.

- $\pi_1(\phi)$ is the abelianization $\mathbb{Z}^7 * \mathbb{Z}_3 \to G = \mathbb{Z}^7 \times \mathbb{Z}_3$.
- By surgery, we kill ker(π₁(φ)) and obtain a manifold *M* (of dim 7) and a map

 $\gamma: M \to BG$ s.t. $\pi_1(\gamma)$ iso and $\gamma_*([M]) = \phi_*([N]) = \mathbf{c}$

• We have $\pi_1(M)$ is abelian, $\alpha_*(\mathbf{c} \times \mathbf{c}) \neq 0$, and $\mathrm{TC}(M) = 2 \dim(M)$.

$$\boldsymbol{c} = [(\boldsymbol{\mathcal{S}}^1)^7] + [\boldsymbol{\mathcal{L}}_3^7] \in \boldsymbol{\mathcal{H}}_7(\mathbb{Z}^7 \times \mathbb{Z}_3) = \boldsymbol{\mathcal{H}}_7((\boldsymbol{\mathcal{S}}^1)^7 \times \boldsymbol{\mathcal{L}}_3^\infty)$$

$$\phi: \mathbf{N} = (\mathbf{S}^1)^7 \# \mathbf{L}_3^7 \xrightarrow{\text{pinch}} (\mathbf{S}^1)^7 \vee \mathbf{L}_3^7 \xrightarrow{} (\mathbf{S}^1)^7 \times \mathbf{L}_3^\infty = \mathbf{B}\mathbf{G}$$

•
$$\phi_*([N]) = \mathbf{c}$$
 but $\pi_1(N) = \mathbb{Z}^7 * \mathbb{Z}_3$ is not abelian.

- $\pi_1(\phi)$ is the abelianization $\mathbb{Z}^7 * \mathbb{Z}_3 \to G = \mathbb{Z}^7 \times \mathbb{Z}_3$.
- By surgery, we kill ker(π₁(φ)) and obtain a manifold *M* (of dim 7) and a map

 $\gamma: M \to BG$ s.t. $\pi_1(\gamma)$ iso and $\gamma_*([M]) = \phi_*([N]) = \mathbf{c}$

• We have $\pi_1(M)$ is abelian, $\alpha_*(\mathbf{c} \times \mathbf{c}) \neq 0$, and $\operatorname{TC}(M) = 2 \dim(M)$.

◆□ > ◆□ > ◆ □ > ◆ □ > ● ● ● ● ● ●

$$\boldsymbol{c} = [(\boldsymbol{\mathcal{S}}^1)^7] + [\boldsymbol{\mathcal{L}}_3^7] \in \boldsymbol{\mathcal{H}}_7(\mathbb{Z}^7 \times \mathbb{Z}_3) = \boldsymbol{\mathcal{H}}_7((\boldsymbol{\mathcal{S}}^1)^7 \times \boldsymbol{\mathcal{L}}_3^\infty)$$

$$\phi: \mathbf{N} = (\mathbf{S}^1)^7 \# \mathcal{L}_3^7 \xrightarrow{\text{pinch}} (\mathbf{S}^1)^7 \vee \mathcal{L}_3^7 \xrightarrow{} (\mathbf{S}^1)^7 \times \mathcal{L}_3^\infty = \mathbf{B}\mathbf{G}$$

- $\phi_*([N]) = \mathbf{c}$ but $\pi_1(N) = \mathbb{Z}^7 * \mathbb{Z}_3$ is not abelian.
- $\pi_1(\phi)$ is the abelianization $\mathbb{Z}^7 * \mathbb{Z}_3 \to G = \mathbb{Z}^7 \times \mathbb{Z}_3$.
- By surgery, we kill ker(π₁(φ)) and obtain a manifold *M* (of dim 7) and a map

 $\gamma: M \to BG$ s.t. $\pi_1(\gamma)$ iso and $\gamma_*([M]) = \phi_*([N]) = \mathbf{c}$

• We have $\pi_1(M)$ is abelian, $\alpha_*(\mathbf{c} \times \mathbf{c}) \neq 0$, and $\operatorname{TC}(M) = 2 \dim(M)$.

◆□ > ◆□ > ◆ □ > ◆ □ > ● ● ● ● ● ●

$$\boldsymbol{c} = [(\boldsymbol{\mathcal{S}}^1)^7] + [\boldsymbol{\mathcal{L}}_3^7] \in \boldsymbol{\mathcal{H}}_7(\mathbb{Z}^7 \times \mathbb{Z}_3) = \boldsymbol{\mathcal{H}}_7((\boldsymbol{\mathcal{S}}^1)^7 \times \boldsymbol{\mathcal{L}}_3^\infty)$$

$$\phi: \mathbf{N} = (\mathbf{S}^1)^7 \# \mathcal{L}_3^7 \xrightarrow{\text{pinch}} (\mathbf{S}^1)^7 \vee \mathcal{L}_3^7 \xrightarrow{} (\mathbf{S}^1)^7 \times \mathcal{L}_3^\infty = \mathbf{B}\mathbf{G}$$

- $\phi_*([N]) = \mathbf{c}$ but $\pi_1(N) = \mathbb{Z}^7 * \mathbb{Z}_3$ is not abelian.
- $\pi_1(\phi)$ is the abelianization $\mathbb{Z}^7 * \mathbb{Z}_3 \to G = \mathbb{Z}^7 \times \mathbb{Z}_3$.
- By surgery, we kill ker(π₁(φ)) and obtain a manifold *M* (of dim 7) and a map

 $\gamma: M \to BG$ s.t. $\pi_1(\gamma)$ iso and $\gamma_*([M]) = \phi_*([N]) = \mathbf{c}$

• We have $\pi_1(M)$ is abelian, $\alpha_*(\mathbf{c} \times \mathbf{c}) \neq 0$, and $\operatorname{TC}(M) = 2 \dim(M)$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

$$\boldsymbol{c} = [(\boldsymbol{\mathcal{S}}^1)^7] + [\boldsymbol{\mathcal{L}}_3^7] \in \boldsymbol{\mathcal{H}}_7(\mathbb{Z}^7 \times \mathbb{Z}_3) = \boldsymbol{\mathcal{H}}_7((\boldsymbol{\mathcal{S}}^1)^7 \times \boldsymbol{\mathcal{L}}_3^\infty)$$

$$\phi: \mathbf{N} = (\mathbf{S}^1)^7 \# L_3^7 \xrightarrow{\text{pinch}} (\mathbf{S}^1)^7 \vee L_3^7 \xrightarrow{} (\mathbf{S}^1)^7 \times L_3^\infty = \mathbf{B}\mathbf{G}$$

•
$$\phi_*([N]) = \mathbf{c}$$
 but $\pi_1(N) = \mathbb{Z}^7 * \mathbb{Z}_3$ is not abelian.

- $\pi_1(\phi)$ is the abelianization $\mathbb{Z}^7 * \mathbb{Z}_3 \to G = \mathbb{Z}^7 \times \mathbb{Z}_3$.
- By surgery, we kill $\ker(\pi_1(\phi))$ and obtain a manifold *M* (of dim 7) and a map

 $\gamma: M \to BG$ s.t. $\pi_1(\gamma)$ iso and $\gamma_*([M]) = \phi_*([N]) = \mathbf{c}$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

• We have $\pi_1(M)$ is abelian, $\alpha_*(\mathbf{c} \times \mathbf{c}) \neq 0$, and $\mathrm{TC}(M) = 2 \dim(M)$.

$$\boldsymbol{c} = [(\boldsymbol{\mathcal{S}}^1)^7] + [\boldsymbol{\mathcal{L}}_3^7] \in \boldsymbol{\mathcal{H}}_7(\mathbb{Z}^7 \times \mathbb{Z}_3) = \boldsymbol{\mathcal{H}}_7((\boldsymbol{\mathcal{S}}^1)^7 \times \boldsymbol{\mathcal{L}}_3^\infty)$$

$$\phi: \mathbf{N} = (\mathbf{S}^1)^7 \# \mathcal{L}_3^7 \xrightarrow{\text{pinch}} (\mathbf{S}^1)^7 \vee \mathcal{L}_3^7 \xrightarrow{} (\mathbf{S}^1)^7 \times \mathcal{L}_3^\infty = \mathbf{B}\mathbf{G}$$

•
$$\phi_*([N]) = \mathbf{c}$$
 but $\pi_1(N) = \mathbb{Z}^7 * \mathbb{Z}_3$ is not abelian.

- $\pi_1(\phi)$ is the abelianization $\mathbb{Z}^7 * \mathbb{Z}_3 \to G = \mathbb{Z}^7 \times \mathbb{Z}_3$.
- By surgery, we kill ker(π₁(φ)) and obtain a manifold *M* (of dim 7) and a map

$$\gamma: M \to BG$$
 s.t. $\pi_1(\gamma)$ iso and $\gamma_*([M]) = \phi_*([N]) = \mathbf{c}$

• We have $\pi_1(M)$ is abelian, $\alpha_*(\mathbf{c} \times \mathbf{c}) \neq 0$, and $\mathrm{TC}(M) = 2 \dim(M)$.