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Motion from position xg to position x;= path in X from xg to xi.

A motion planning algorithm is a section s : X x X — X101 of
evor: X0 = X % X, v (4(0),7(1))
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There is a global continuous section iff X is contractible.
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Definition and some properties (Farber)

Let X be a path-connected space (CW-complex, manifold).

Definition. TC(X) is the least integer n s.t. X x X can be covered

by n+ 1 open sets on each of which evy 1 admits a local continuous
section.

@ TC is a homotopy invariant.
@ TC(X) = 0iff X is contractible, TC(S?**") =1, TC(S%) =2,
@ TC(X) < 2dim(X).

We say that TC(X) is maximal when TC(X) = 2dim(X).
This only can happen when 7{(X) # 0 because

m(X)=0= TC(X) < dim(X).
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Theorem. (Farber, 2003)
@ TC(S?) =2
@ TC(T) =2
@ forg > 2, TC(Ty) = 4.

Important tool: TC(X) > zclx(X)=maximal length of a nontrivial product
in the kernel of the cup-product

U H* (X k) @ H*(X; k) —> H*(X; k)
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g
Theorem.(Farber, Tabachnikov, Yuzvinsky, 2003) TC(RP?) = 3

Theorem.(Dranishnikov, 2016) For g > 4, TC(Ny) = 4.

Theorem.(Cohen, V, 2017) TC(K) = 4. For g > 2, TC(Ny) = 4.
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Real projective spaces

In analogy to Ny = RP?+# - - - #RP? (g copies), we consider
Py = RP"# - #RP"
—_—

g copies

Theorem. (Cohen-V.,2018) Forn>2and g > 2, TC(Pg) =2n.
Case g = 1, P = RP" (Farber, Tabachnikov, Yuzvinsky - 2003)

Theorem. (FTY)
@ Forn=1,30r7, TC(RP") = n.

@ Forn# 1,3,7, TC(RP") is the least integer k such that there exists
an immersion of RP” in RX.

In particular, TC(RP") < 2n—1.
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TC of spaces with small fundamental group

Theorem. (Costa-Farber, 2010) X finite CW-complex of dim n.
@ If 71 (X) = Zy, then TC(X) < 2n.

Q If m1(X) = Z3 then TC(X) < 2n when either n is odd or n is even
and the 3-adic expansion of n/2 contains at least one digit 2.

The condition in the even dimensional case of (2) is sharp:
For X = 6-dimensional skeleton of the lens space L} = S7/Zs,
m(X)=Zs and TC(X) = 2dim(X)

Note that X is not a closed manifold.
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TC of manifolds with abelian 71 (Cohen-V., 2021)

Theorem. Let M be a nonorientable manifold with abelian funda-
mental group. Then TC(M) < 2dim(M) — 1.

Theorem. Let M be an n-dimensional orientable manifold with abelian
fundamental group 71 (M) of one of the following forms:

@ Z' with either n odd or n even such that r < 2n

Q Z x Zpa with pprime and r < n

() 2" x Lpa x Lpp and r < 1

(% ) Lipa % Zpb X ZLipe

@ 7' x (Z,)S with either n odd or n even such that r < 2n

Then TC(M) < 2dim(M) — 1.
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M closed manifold with dimM = nand m1(M) = G

Building on works of Costa-Farber and Dranishnikov we prove:
Proposition. If 71(M) = G is abelian then

TC(M) < 2n< a,(Mm xm) =0 in Han(BG; Z) = Hon(G: Z).

" o, isinducedby a:GxG— G, a(ab)=ab.
= m = ~,([M]) € H,(BG; Z) where:
@ y:M— BGisamaps.tm(y): m(M) S ny(BG) = G.

@ 7: 7 with the action of G given by the orientation character
w:G=m(M)—{£1}.

@ [M] e Hy(M;Z) = Z is the (twisted) fundamental class of M.



Study of a.(c x ¢) for ¢ € Hn(BG; Z)

G finitely generated abelian group with action on Z.

H.(BG;Z) is a Pontrjagin algebra with a strictly anti-commutative
product A

crd=(-1)ldlg A ¢ withc A ¢ =0when|c|is odd.



Study of a.(c x ¢) for ¢ € Hn(BG; Z)

G finitely generated abelian group with action on Z.

H.(BG;Z) is a Pontrjagin algebra with a strictly anti-commutative
product A

crd=(-1)ldlg A ¢ withc A ¢ =0when|c|is odd.
Considering the morphism induced by the inversion of G
| : Hy(BG;Z) — H.(BG;Z)

we have
ax(c xc)=c A l(c).

If /(c) = ¢ and |c| is odd then a.(¢ x €) = +¢ A € = 0.
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Proposition. For c € H,(BG; Z) with n > 2, we have o (¢ x¢) =0
when

@ the action of G on Z is not trivial

@ the action of G on Z is trivial and G is of one of the following forms.

@ Z’ with either n odd or n even such that r < 2n

© 7' x Zpa with pprime and r < n

Q 7' x Zps x Ly with pwith r < 1

(% ] ZLpa x Z ob X Lpe

Q 7 x S with either n odd or n even such that r < 2n

All the conditions are sharp.

In (2), the condition r < nis sharp because for G = 7" x Z3, there
exists ¢ € H7(BG;Z) such that a..(c x ¢) # 0.
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¢ =[(8")]+[L§] € H1(Z" x Zs) = H((S")" x LY)

¢ N = (S #L] 2L (817 LI (8" x LY = BG
@ #.([N]) = ¢ but m1(N) = Z’ + Z3 is not abelian.
@ 1(¢) is the abelianization Z” « Zz — G = Z” x Zs.

@ By surgery, we Kill ker(m1(¢)) and obtain a manifold M (of dim 7)
and a map

v:M— BG s.t m(y)iso and v.([M]) = ¢«([N]) = ¢

@ We have 71(M) is abelian, a.(cxc) # 0, and TC(M) = 2dim(M).



