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What are Knots and Links?
Definition of a knot

Definition

A knot is the image of a circle S1 in S3 (or R3) by an embedding

i : S1 ↪→ S3 (or R3)

denoted by K = i(S1).
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What are Knots and Links?
Examples of Knots

Two of the simplest examples of knots are:

Figure: The trivial knot
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What are Knots and Links?
Examples of Knots

Figure: The trefoil knot
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What are Knots and Links?
Definition of a Link

Definition

A link is the image of n disjoint copies S1 ⊔ · · · ⊔ S1 of a circle S1 in S3 (or R3) by an
embedding

i : S1 ⊔ · · · ⊔ S1 ↪→ S3 (or R3)

denoted by L = K1 ⊔ · · · ⊔ Kn where Kj , 1 ≤ j ≤ n is the image of the j th copy of S1.

• A Knot is a link with one component (n = 1).
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What are Knots and Links?
Examples of Links

Some of the simplest examples of links are:

Figure: The trivial link with two components
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What are Knots and Links?
Examples of Links

Some of the simplest examples of links are:

Figure: The hopf link
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Knot equivalence

The main problem in knot theory is the following: When are two Knots (Links) the same?
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Knot equivalence
Reidemeister moves

An approach to knot equivalence will be in term of three operations on the knot diagrams
called Reidemeister moves.

• A Reidemeister move is one of the three following ways to change a projection of the knot.
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Knot equivalence
Reidemeister moves

Figure: Reidemeister moves of type I, II and III.
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Knot equivalence

Definition

Two diagrams D1 and D2 are equivalent if and only if they are related by a sequence of
Reidemeister moves and planar isotopies.

Theorem

Two knots or links are equivalent if and only if their diagrams are equivalent.
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Knot equivalence
Example
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Knot invariants

We can use knot invariants to help us tell whether or not two knot diagrams represent the
same knot.

Definition

A knot invariant is a function that assigns a quantity or a mathematical expression to a knot,
which is preserved under knot equivalence. In other words, if two knots are equivalent, then
they must be assigned the same quantity or expression. However, the converse is not
necessarily true; if two knots are assigned the same invariant, it does not necessarily mean that
they are equivalent.
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Knot invariant
Coloring knots by quandles

Quandles were introduced in order to give an algebraic interpretation of the Reidemeister
moves.

Definition

A quandle, is a non-empty set Q equipped with a binary operation

∗ : Q × Q −→ Q
(x , y) 7−→ x ∗ y

satisfying the following three axioms:

1. For all x ∈ Q, x ∗ x = x .

2. For all y ∈ Q, the map Ry : Q → Q defined by Ry (x) = x ∗ y , x ∈ Q, is bijective.

3. For all x , y , z ∈ Q, (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z) (right self-distributivity).
We write x ∗−1 y for R−1

y (x).
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Examples of quandles
Alexander quandle

Example

Alexander quandle
An Alexander quandle M is a Z[t, t−1]-module endowed with the following binary operation:

x ∗ y = tx + (1− t)y for all x , y ∈ M.

Note that we have x ∗−1 y = t−1x + (1− t−1)y .
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Examples of quandles
Linear Alexander quandle

Example

Linear Alexander quandle
Given positive integers m < n such that gcd (m, n) = 1, we let the underlying set to be Zn

with the binary operation:

x ∗ y = mx + (1−m)y (mod n), for all x , y ∈ Zn.

Note that we have x ∗−1 y = m−1x + (1−m−1)y (mod n).
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Coloring links by quandles

Let (Q, ∗) be a quandle and D a diagram of an oriented link L. A coloring of D by Q is a map
C from the set of arcs of D denoted by A to Q,

C : A → Q

such that at each crossing of D, if the over-arc α1 is colored by C(α1) = y and the incoming
under-arc is colored by C(α2) = x then the outcoming under-arc is colored by C(α3) = x ∗ y or
C(α3) = x ∗−1 y according to the rule depicted in the following Figure

Figure: Coloring conditions.
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Coloring links by Alexander quandles

If Q is an Alexander quandle, by collecting the coloring conditions at all crossings of D, we get
a homogeneous system of linear equations over Z[t, t−1]. The matrix associated to this system
of equations is called the Alexander matrix denoted A.
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• The rows of A correspond to the crossings of D and the columns correspond to the arcs
of D.

• Each row has only three non-zero entries which are t, 1− t and −1. So on the one hand
(λ, . . . , λ) is a solution for any λ ∈ Z[t, t−1] (trivial solutions), and on the other hand the
determinant of the Alexander matrix is zero.

• A non-trivial solution of the initial homogeneous system corresponds to a non-trivial
solution of the system of equations determined by the original matrix with one row and
one column deleted.

• The determinant of this last submatrix is known to be the Alexander polynomial of the
considered link denoted by ∆L(t). Therefore, the existence of non-trivial solutions
corresponds to working on the quotient of Z[t, t−1] by ∆L(t), which is a Laurent
polynomial on the variable t determined up to ±tn, for any integer n.

20 / 43



• The rows of A correspond to the crossings of D and the columns correspond to the arcs
of D.

• Each row has only three non-zero entries which are t, 1− t and −1. So on the one hand
(λ, . . . , λ) is a solution for any λ ∈ Z[t, t−1] (trivial solutions), and on the other hand the
determinant of the Alexander matrix is zero.

• A non-trivial solution of the initial homogeneous system corresponds to a non-trivial
solution of the system of equations determined by the original matrix with one row and
one column deleted.

• The determinant of this last submatrix is known to be the Alexander polynomial of the
considered link denoted by ∆L(t). Therefore, the existence of non-trivial solutions
corresponds to working on the quotient of Z[t, t−1] by ∆L(t), which is a Laurent
polynomial on the variable t determined up to ±tn, for any integer n.

21 / 43



• The rows of A correspond to the crossings of D and the columns correspond to the arcs
of D.

• Each row has only three non-zero entries which are t, 1− t and −1. So on the one hand
(λ, . . . , λ) is a solution for any λ ∈ Z[t, t−1] (trivial solutions), and on the other hand the
determinant of the Alexander matrix is zero.

• A non-trivial solution of the initial homogeneous system corresponds to a non-trivial
solution of the system of equations determined by the original matrix with one row and
one column deleted.

• The determinant of this last submatrix is known to be the Alexander polynomial of the
considered link denoted by ∆L(t). Therefore, the existence of non-trivial solutions
corresponds to working on the quotient of Z[t, t−1] by ∆L(t), which is a Laurent
polynomial on the variable t determined up to ±tn, for any integer n.

22 / 43



• The rows of A correspond to the crossings of D and the columns correspond to the arcs
of D.

• Each row has only three non-zero entries which are t, 1− t and −1. So on the one hand
(λ, . . . , λ) is a solution for any λ ∈ Z[t, t−1] (trivial solutions), and on the other hand the
determinant of the Alexander matrix is zero.

• A non-trivial solution of the initial homogeneous system corresponds to a non-trivial
solution of the system of equations determined by the original matrix with one row and
one column deleted.

• The determinant of this last submatrix is known to be the Alexander polynomial of the
considered link denoted by ∆L(t). Therefore, the existence of non-trivial solutions
corresponds to working on the quotient of Z[t, t−1] by ∆L(t), which is a Laurent
polynomial on the variable t determined up to ±tn, for any integer n.

23 / 43



The reduced Alexander polynomial ∆0
K (t)

let K be a knot, the reduced Alexander polynomial of K is

∆0
K (t) = c0 + c1t + c2t

2 + · · ·+ cNt
N ,

where N is even, cN−r = cr , cN
2
is odd and c0 > 0.
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Coloring knots by Alexander quandles
Example

We consider the diagram D of the knot 73 whose arcs are labeled as shown in the following
figure
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Coloring knots by Alexander quandle
Example: The Alexander matrix

we get the following Alexander matrix A:

A =



a1 a2 a3 a4 a5 a6 a7
1− t −1 0 0 0 0 t
−1 1− t t 0 0 0 0
0 t 1− t −1 0 0 0
t 0 0 1− t −1 0 0
0 0 0 t 1− t −1 0
0 0 0 0 t 1− t −1
0 0 −1 0 0 t 1− t


• The determinant of the minor matrix M is det(M) = −2t + 3t2 − 3t3 + 3t4 − 2t5.

• The reduced Alexander polynomial of the knot 73 is ∆0
73
(t) = 2− 3t + 3t2 − 3t3 + 2t4.
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Coloring links by linear Alexander quandle

if m and n are coprime integers, a coloring of a diagram D of a link L by the quandle Λn,m is a
map from the set A of arcs of L to Λn,m satisfying the coloring conditions, such non-trivial
coloring exists if n divides ∆0

L(m). That coloring is called an (n,m)-coloring.
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Minimum number of colors

Kauffman and Lopes [2] studied the number of distinct colors appeared in a non-trivially
(p,m)-colored knot diagram.

Definition

Let L be a link admitting non-trivial (p,m)-colorings. Let D be a diagram of L and let nD,p,m

be the minimum number of colors it takes to equip D with a non-trivial (p,m)-coloring. We let

mincolp,m(L) = min{nD,p,m|D is a diagram of L}

and refer to it as the minimum number of colors for non-trivial (p,m)-colorings of L.
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A lower bound for the minimum number of link colorings by

linear Alexander quandles
Theorem [Kauffman and Lopes]

Theorem (Kauffman and Lopes)

Let K be a knot i.e., a 1-component link. Let p be an odd prime. Let m be an integer such
that K admits non-trivial (p,m)-colorings (mod p). If m ̸= 2 (or m = 2 but ∆0

K (m) ̸= 0)
then

2 + ⌊logM p⌋ ≤ mincolp,m(K ),

where M = max{|m|, |m − 1|}.
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An improvement of the lower bound for the minimum number of

knot colorings by linear Alexander quandles

Lemma

Let K be a knot and ∆0
K (t) =

k∑
i=0

ci t
i , its reduced Alexander polynomial. Let m be an integer,

m > 1, and p = ∆0
K (m). If m > max

0≤i≤k
{|ci |}+ 1, then 2 + ⌊logm p⌋ is either k + 1 or k + 2.
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Remark 1

Remark

The proof shows that the condition m > max
0≤i≤k

{|ci |}+ 1 is needed in the only one case where

the non-null coefficients do not alternate and the two penultimate non-null coefficients have
negative signs. Otherwise the weaker condition m > max

0≤i≤k
{|ci |} suffices.
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Theorem 1

Theorem

Let K be a knot. Let ∆0
K (t) =

k∑
i=0

ci t
i be the reduced Alexander polynomial of K. Let m be

an integer, such that m > max
0≤i≤k

{|ci |}+ 1 and p = ∆0
K (m) is an odd prime integer.

1. If ck = 1 and the penultimate non-zero coefficient is negative, then

k + 1 ≤ mincolp,m(K ).

2. If ck > 1 or the penultimate non-zero coefficient is positive, then

k + 2 ≤ mincolp,m(K ).
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Applications to L-space knots

The non-zero coefficients of the reduced Alexander polynomial of an L-space knot K are all
±1, and they alternate in sign [4].

Corollary

Let K be an L-space knot. If m is an integer such that m > 1 and p = ∆0
K (m) is an odd

prime, then
k + 1 ≤ mincolp,m(K ).
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Applications to L-space knots
Torus knots

A torus link Tp,q is a special kind of links that lies on a surface of an unknotted torus in R3. It
is created by traveling p times vertically and q times horizontally around the torus.

Figure: Torus link Tp,q.
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• If p and q are coprime then Tp,q is a knot. A torus link arises if p and q are not coprime
in which case the number of components is gcd(p, q).

• Torus knots are L-space knots [4].

• If Ta,b is a torus knot, then the non-zero coefficients of the reduced Alexander polynomial
∆0

Ta,b
(t) are all ±1, and they alternate in sign [4].
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Applications to L-space knots
Torus knots

Proposition

Let Ta,b be a torus knot. Let m be an integer such that, m > 1 and p = ∆0
Ta,b

(m) is an odd
prime, then

c(Ta,b)− (a− 2) ≤ mincolp,m(Ta,b) ≤ c(Ta,b),

where c(Ta,b) is the crossing number of the torus knot Ta,b.
In particular

mincolp,m(T2,b) = c(T2,b).

The crossing number is the minimum number of crossing in any diagram of a knot.
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Applications to L-space knots
Pretzel knots P(−2, 3, 2l + 1)

A pretzel link P(p1, p2, p3, . . . , pn) is defined by an n-tuple (p1, p2, p3, . . . , pn), n ≥ 3, such
that each pi is nonzero integer. The absolute value of pi is the number of half twists and the
sign of pi is either positive or negative as seen in the following figure

Figure: Pretzel link P(p1, p2, p3, . . . , pn).

The pretzel link P(p1, p2, p3, . . . , pn) is a knot if and only if both n and all the pi are odd or
exactly one of the pi is even.

40 / 43



Applications to L-space knots
Pretzel knots P(−2, 3, 2l + 1)

Lidman and Moore showed that P(−2, 3, 2l + 1), l ≥ 0, are the only L-space Pretzel knots [3].
In what follows, we prove that if we color a diagram of the Pretzel knot P(−2, 3, 2l + 1),
l ≥ 0, by the linear Alexander quandle Zp[t]/(t − 2) where p is an odd prime, then the lower
bound in Theorem 1 is reached.

Proposition

Let K = P(−2, 3, a) be a pretzel knot where a is an odd positive integer. Let m > 1 be an
integer such that p = ∆0

K (m) is an odd prime. If ∆0
K (m) ̸= 0 then

a+ 4 ≤ mincolp,m(K ).

In particular, if m = 2 then
a+ 4 = mincolp,m(K ).
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A lower bound for the minimum number of link colorings by

linear Alexander quandles
Theorem

Theorem

Let L be a link whose reduced Alexander polynomial ∆0
L(t) ̸= 0. Let m be an integer and p a

prime factor of ∆0
L(m) such that L admits non-trivial (p,m)-colorings. Suppose that

∆0
L(m) ̸= 0 then

2 + ⌊logM p⌋ ≤ mincolp,m(L),

where M = max{|m|, |m − 1|}.
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