On the rational topological complexity of coformal elliptic spaces

Said Hamoun

Joint work with: Youssef Rami and Lucile Vandembroucq

My Ismail University of Meknès, Department of Mathematics, B. P. 11 201 Zitoune, Meknès, Morocco. Centro de Matemática, Universidade do Minho, Campus de Gualtar, 4710-057 Braga,

Portugal.

March 18, 2023

TCMP: Topological complexity and motion planning

Let S be a topological space.

Definition

The topological complexity of S denoted by TC(S) is the least integer n such that there exists a family of open subsets U_0, \dots, U_n covering $S \times S$ and local continuous sections of the evaluation map $e_{0,1}: S^{[0,1]} \longrightarrow S \times S, \quad \gamma \longmapsto (\gamma(0), \gamma(1)).$

Definition

The Lusternik–Schnirelmann category of S, cat(S), is the least integer n such that there exists a family of open subsets U_0, \dots, U_n covering S, each of which is contractible in S.

Let S be a topological space.

Definition

The topological complexity of S denoted by TC(S) is the least integer n such that there exists a family of open subsets U_0, \dots, U_n covering $S \times S$ and local continuous sections of the evaluation map $e_{0,1}: S^{[0,1]} \longrightarrow S \times S, \quad \gamma \longmapsto (\gamma(0), \gamma(1)).$

Definition

The Lusternik–Schnirelmann category of S, cat(S), is the least integer n such that there exists a family of open subsets U_0, \dots, U_n covering S, each of which is contractible in S.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Let S be a topological space.

Definition

The topological complexity of S denoted by TC(S) is the least integer n such that there exists a family of open subsets U_0, \dots, U_n covering $S \times S$ and local continuous sections of the evaluation map $e_{0,1}: S^{[0,1]} \longrightarrow S \times S, \quad \gamma \longmapsto (\gamma(0), \gamma(1)).$

Definition

The Lusternik–Schnirelmann category of S, cat(S), is the least integer n such that there exists a family of open subsets U_0, \dots, U_n covering S, each of which is contractible in S.

• TC and cat are homotopy invariants and satisfy the inequality $\operatorname{cat}(S) \leq \operatorname{TC}(S) \leq 2\operatorname{cat}(S).$

• In particular for spheres Sⁿ we have

$$\begin{cases} \operatorname{TC}(S^n) = \operatorname{cat}(S^n) = 1 \text{ if } n \text{ is odd} \\ \operatorname{TC}(S^n) = 2\operatorname{cat}(S^n) = 2 \text{ if } n \text{ is even} \end{cases}$$

Actually $\operatorname{TC}(S^n) = \operatorname{zcl}_{\mathbb{Q}}(S^n)$.

 zcl_Q(S) is the maximal length of a non-trivial product in the kernel of the multiplication H^{*}(S; Q) ⊗ H^{*}(S; Q) → H^{*}(S; Q).

• For
$$S^n$$
 we have $H^*(S^n; \mathbb{Q}) = \frac{\mathbb{Q}[x]}{(x^2)}$ with $|x| = n$ and
 $(x \otimes 1 - 1 \otimes x)^2 = \begin{cases} 0 \text{ if } |x| \text{ is odd} \\ \neq 0 \text{ if } |x| \text{ is even} \end{cases}$

• TC and cat are homotopy invariants and satisfy the inequality $f(C) \leq TC(C) \leq 2 - f(C)$

$$\operatorname{cat}(S) \leq \operatorname{TC}(S) \leq 2\operatorname{cat}(S).$$

• In particular for spheres S^n we have

$$\begin{cases} \operatorname{TC}(S^n) = \operatorname{cat}(S^n) = 1 \text{ if } n \text{ is odd} \\ \operatorname{TC}(S^n) = 2\operatorname{cat}(S^n) = 2 \text{ if } n \text{ is even.} \end{cases}$$

Actually $TC(S^n) = zcl_{\mathbb{Q}}(S^n)$.

 zcl_Q(S) is the maximal length of a non-trivial product in the kernel of the multiplication H^{*}(S; Q) ⊗ H^{*}(S; Q) → H^{*}(S; Q).

• For
$$S^n$$
 we have $H^*(S^n; \mathbb{Q}) = \frac{\mathbb{Q}[x]}{(x^2)}$ with $|x| = n$ and

$$(x \otimes 1 - 1 \otimes x)^2 = \begin{cases} 0 \text{ if } |x| \text{ is odd} \\ \neq 0 \text{ if } |x| \text{ is even} \end{cases}$$

 $\bullet~{\rm TC}$ and ${\rm cat}$ are homotopy invariants and satisfy the inequality

$$\operatorname{cat}(S) \leq \operatorname{TC}(S) \leq 2\operatorname{cat}(S).$$

• In particular for spheres S^n we have

$$\begin{cases} \operatorname{TC}(S^n) = \operatorname{cat}(S^n) = 1 \text{ if } n \text{ is odd} \\ \operatorname{TC}(S^n) = 2\operatorname{cat}(S^n) = 2 \text{ if } n \text{ is even}. \end{cases}$$

Actually $TC(S^n) = zcl_{\mathbb{Q}}(S^n)$.

 zcl_Q(S) is the maximal length of a non-trivial product in the kernel of the multiplication H^{*}(S; Q) ⊗ H^{*}(S; Q) → H^{*}(S; Q).

• For
$$S^n$$
 we have $H^*(S^n; \mathbb{Q}) = \frac{\mathbb{Q}[x]}{(x^2)}$ with $|x| = n$ and
 $(x \otimes 1 - 1 \otimes x)^2 = \begin{cases} 0 \text{ if } |x| \text{ is odd} \\ \neq 0 \text{ if } |x| \text{ is even} \end{cases}$

 $\bullet~{\rm TC}$ and ${\rm cat}$ are homotopy invariants and satisfy the inequality

$$\operatorname{cat}(S) \leq \operatorname{TC}(S) \leq 2\operatorname{cat}(S).$$

• In particular for spheres S^n we have

$$\begin{cases} \operatorname{TC}(S^n) = \operatorname{cat}(S^n) = 1 \text{ if } n \text{ is odd} \\ \operatorname{TC}(S^n) = 2\operatorname{cat}(S^n) = 2 \text{ if } n \text{ is even.} \end{cases}$$

Actually $TC(S^n) = zcl_Q(S^n)$.

 zcl_Q(S) is the maximal length of a non-trivial product in the kernel of the multiplication H^{*}(S; Q) ⊗ H^{*}(S; Q) → H^{*}(S; Q).

• For
$$S^n$$
 we have $H^*(S^n; \mathbb{Q}) = \frac{\mathbb{Q}[x]}{(x^2)}$ with $|x| = n$ and
 $(x \otimes 1 - 1 \otimes x)^2 = \begin{cases} 0 \text{ if } |x| \text{ is odd} \\ \neq 0 \text{ if } |x| \text{ is even} \end{cases}$

From now on S is a simply-connected CW-complex of finite type. The rational topological complexity and LS-category are defined by

$$\operatorname{TC}_0(S) := \operatorname{TC}(S_0), \quad \operatorname{cat}_0(S) := \operatorname{cat}(S_0)$$

where S_0 is the rationalization of S. This means

- S₀ is a rational space-π_{*}(S₀) or equivalently H^{*}(S₀; ℤ) is a rational vector space.
- There exists $\rho_S : S \to S_0$ which induces $\pi_*(S) \otimes \mathbb{Q} \xrightarrow{\cong} \pi_*(S_0)$ and $H^*(S_0) \xrightarrow{\cong} H^*(S; \mathbb{Q}).$

We have

• $\operatorname{zcl}_{\mathbb{Q}}(S) \leq \operatorname{TC}_{0}(S) \leq \operatorname{TC}(S)$

• $\operatorname{cat}_0(S) \leq \operatorname{TC}_0(S) \leq 2\operatorname{cat}_0(S)$.

From now on S is a simply-connected CW-complex of finite type. The rational topological complexity and LS-category are defined by

$$\operatorname{TC}_0(S) := \operatorname{TC}(S_0), \quad \operatorname{cat}_0(S) := \operatorname{cat}(S_0)$$

where S_0 is the rationalization of S. This means

- S₀ is a rational space-π_{*}(S₀) or equivalently H^{*}(S₀; ℤ) is a rational vector space.
- There exists $\rho_S : S \to S_0$ which induces $\pi_*(S) \otimes \mathbb{Q} \xrightarrow{\cong} \pi_*(S_0)$ and $H^*(S_0) \xrightarrow{\cong} H^*(S; \mathbb{Q}).$

We have

• $\operatorname{zcl}_{\mathbb{Q}}(S) \leq \operatorname{TC}_{0}(S) \leq \operatorname{TC}(S)$

•
$$\operatorname{cat}_0(S) \leq \operatorname{TC}_0(S) \leq 2\operatorname{cat}_0(S).$$

$\bullet\,$ The general goal is to study ${\rm TC}_0$ in terms of ${\rm cat}_0$ for elliptic spaces.

- S is said (rationally) elliptic if $H^*(S; \mathbb{Q}) < \infty$ and $\pi_*(S) \otimes \mathbb{Q} < \infty$.
- The main tools in this context are Sullivan models.
- A minimal Sullivan model (ΛV, d) of S is a cochain algebra which is free as a commutative graded algebra and satisfies

 $d(V) \subset \Lambda^{\geq 2}V, \quad V \cong \pi_*(S) \otimes \mathbb{Q}, \quad H^*(\Lambda V, d) = H^*(S; \mathbb{Q}).$

- $\bullet\,$ The general goal is to study ${\rm TC}_0$ in terms of ${\rm cat}_0$ for elliptic spaces.
- S is said (rationally) elliptic if $H^*(S; \mathbb{Q}) < \infty$ and $\pi_*(S) \otimes \mathbb{Q} < \infty$.
- The main tools in this context are Sullivan models.
- A minimal Sullivan model (ΛV, d) of S is a cochain algebra which is free as a commutative graded algebra and satisfies

 $d(V) \subset \Lambda^{\geq 2}V, \quad V \cong \pi_*(S) \otimes \mathbb{Q}, \quad H^*(\Lambda V, d) = H^*(S; \mathbb{Q}).$

- $\bullet\,$ The general goal is to study ${\rm TC}_0$ in terms of ${\rm cat}_0$ for elliptic spaces.
- S is said (rationally) elliptic if $H^*(S; \mathbb{Q}) < \infty$ and $\pi_*(S) \otimes \mathbb{Q} < \infty$.
- The main tools in this context are Sullivan models.
- A minimal Sullivan model (ΛV, d) of S is a cochain algebra which is free as a commutative graded algebra and satisfies

 $d(V) \subset \Lambda^{\geq 2}V, \quad V \cong \pi_*(S) \otimes \mathbb{Q}, \quad H^*(\Lambda V, d) = H^*(S; \mathbb{Q}).$

- $\bullet\,$ The general goal is to study ${\rm TC}_0$ in terms of ${\rm cat}_0$ for elliptic spaces.
- S is said (rationally) elliptic if $H^*(S; \mathbb{Q}) < \infty$ and $\pi_*(S) \otimes \mathbb{Q} < \infty$.
- The main tools in this context are Sullivan models.
- A minimal Sullivan model $(\Lambda V, d)$ of S is a cochain algebra which is free as a commutative graded algebra and satisfies

$$d(V) \subset \Lambda^{\geq 2}V, \quad V \cong \pi_*(S) \otimes \mathbb{Q}, \quad H^*(\Lambda V, d) = H^*(S; \mathbb{Q}).$$

Examples of minimal Sullivan models

• For spheres S^n we have $H^*(S^n; \mathbb{Q}) = \frac{\mathbb{Q}[x]}{(x^2)}$ with |x| = n and

$$\begin{cases} (\Lambda V, d) = (\Lambda x, 0) \text{ if } n \text{ is odd} \\ (\Lambda V, d) = (\Lambda (x, y), d) \text{ with } dx = 0 \text{ and } dy = x^2 \text{ if } n \text{ is even.} \end{cases}$$

• For the homogeneous space $S = \frac{SU(6)}{SU(3) \times SU(3)}$, $(\Lambda V, d) = (\Lambda(x_1, x_2, y_1, y_2, z, d) \text{ with } |x_1| = 4, |x_2| = 6, dx_1 = 0,$ $dx_2 = 0, dy_1 = x_1^2, dy_2 = x_2^2 \text{ and } dz = x_1x_2.$

degree46131519
$$H^*(S; \mathbb{Q})$$
 $[x_1]$ $[x_2]$ $[x_1z - x_2y_1]$ $[x_2z - x_1y_2]$ $[x_1x_2z - x_1^2y_2]$

Examples of minimal Sullivan models

• For spheres S^n we have $H^*(S^n; \mathbb{Q}) = \frac{\mathbb{Q}[x]}{(x^2)}$ with |x| = n and

$$\begin{cases} (\Lambda V, d) = (\Lambda x, 0) \text{ if } n \text{ is odd} \\ (\Lambda V, d) = (\Lambda (x, y), d) \text{ with } dx = 0 \text{ and } dy = x^2 \text{ if } n \text{ is even.} \end{cases}$$

• For the homogeneous space $S = \frac{SU(6)}{SU(3) \times SU(3)}$, $(\Lambda V, d) = (\Lambda(x_1, x_2, y_1, y_2, z, d) \text{ with } |x_1| = 4, |x_2| = 6, dx_1 = 0,$ $dx_2 = 0, dy_1 = x_1^2, dy_2 = x_2^2 \text{ and } dz = x_1x_2.$

degree46131519 $H^*(S; \mathbb{Q})$ $[x_1]$ $[x_2]$ $[x_1z - x_2y_1]$ $[x_2z - x_1y_2]$ $[x_1x_2z - x_1^2y_2]$

Examples of minimal Sullivan models

• For spheres S^n we have $H^*(S^n; \mathbb{Q}) = \frac{\mathbb{Q}[x]}{(x^2)}$ with |x| = n and

$$\begin{cases} (\Lambda V, d) = (\Lambda x, 0) \text{ if } n \text{ is odd} \\ (\Lambda V, d) = (\Lambda (x, y), d) \text{ with } dx = 0 \text{ and } dy = x^2 \text{ if } n \text{ is even.} \end{cases}$$

• For the homogeneous space $S = \frac{SU(6)}{SU(3) \times SU(3)}$, $(\Lambda V, d) = (\Lambda(x_1, x_2, y_1, y_2, z, d) \text{ with } |x_1| = 4, |x_2| = 6, dx_1 = 0,$ $dx_2 = 0, dy_1 = x_1^2, dy_2 = x_2^2 \text{ and } dz = x_1x_2.$

 $dV^{even} = 0$ and $dV^{odd} \subset \Lambda V^{even}$.

• The space S is said **formal** if there is a quasi-isomorphism $(\Lambda V, d) \xrightarrow{\simeq} (H^*(S; \mathbb{Q}), 0).$

• Note that S^n is a formal space while $\frac{SU(6)}{SU(3) \times SU(3)}$ is not.

Theorem (Lechuga-Murillo)

For any formal space, we have

 $\mathrm{TC}_0(S) = \mathrm{zcl}_{\mathbb{Q}}(S).$

 $dV^{even} = 0$ and $dV^{odd} \subset \Lambda V^{even}$.

• The space S is said **formal** if there is a quasi-isomorphism $(\Lambda V, d) \xrightarrow{\simeq} (H^*(S; \mathbb{Q}), 0).$

• Note that S^n is a formal space while $\frac{SU(6)}{SU(3) \times SU(3)}$ is not.

Theorem (Lechuga-Murillo)

For any formal space, we have

 $\mathrm{TC}_0(S) = \mathrm{zcl}_{\mathbb{Q}}(S).$

 $dV^{even} = 0$ and $dV^{odd} \subset \Lambda V^{even}$.

• The space S is said formal if there is a quasi-isomorphism

$$(\Lambda V, d) \xrightarrow{\simeq} (H^*(S; \mathbb{Q}), 0).$$

• Note that S^n is a formal space while $\frac{SU(6)}{SU(3) \times SU(3)}$ is not.

Theorem (Lechuga-Murillo)

For any formal space, we have

 $\mathrm{TC}_0(S) = \mathrm{zcl}_{\mathbb{Q}}(S).$

Said Hamoun (FSM-CMAT) On the rational topological complexity of cofc March 18, 2023

 $dV^{even} = 0$ and $dV^{odd} \subset \Lambda V^{even}$.

• The space S is said formal if there is a quasi-isomorphism

$$(\Lambda V, d) \xrightarrow{\simeq} (H^*(S; \mathbb{Q}), 0).$$

• Note that S^n is a formal space while $\frac{SU(6)}{SU(3) \times SU(3)}$ is not.

Theorem (Lechuga-Murillo)

For any formal space, we have

$$\operatorname{TC}_0(S) = \operatorname{zcl}_{\mathbb{Q}}(S).$$

Said Hamoun (FSM-CMAT) On the rational topological complexity of cofe

$$\chi_{\pi}(S) = \dim \pi_{even}(S) \otimes \mathbb{Q} - \dim \pi_{odd}(S) \otimes \mathbb{Q}.$$

• $\chi_{\pi}(S) \leq 0$ and if $(\Lambda V, d)$ is a minimal model of S then $\chi_{\pi}(S) = \dim V^{even} - \dim V^{odd} = \chi_{\pi}(\Lambda V).$

• If $\chi_{\pi}(S) = 0$, S is automatically formal and called F_0 -space.

I heorem

If S is a pure formal elliptic space then $\mathrm{TC}_0(S)=2\mathrm{cat}_0(S)+\chi_\pi(S).$

$$\chi_{\pi}(S) = \dim \pi_{\mathit{even}}(S) \otimes \mathbb{Q} - \dim \pi_{\mathit{odd}}(S) \otimes \mathbb{Q}.$$

• $\chi_{\pi}(S) \leq 0$ and if $(\Lambda V, d)$ is a minimal model of S then $\chi_{\pi}(S) = \dim V^{even} - \dim V^{odd} = \chi_{\pi}(\Lambda V).$

• If $\chi_{\pi}(S) = 0$, S is automatically formal and called F_0 -space.

I heorem

If S is a pure formal elliptic space then $\mathrm{TC}_0(S)=2\mathrm{cat}_0(S)+\chi_\pi(S).$

$$\chi_{\pi}(S) = \dim \pi_{\mathit{even}}(S) \otimes \mathbb{Q} - \dim \pi_{\mathit{odd}}(S) \otimes \mathbb{Q}.$$

• $\chi_{\pi}(S) \leq 0$ and if $(\Lambda V, d)$ is a minimal model of S then $\chi_{\pi}(S) = \dim V^{even} - \dim V^{odd} = \chi_{\pi}(\Lambda V).$

• If $\chi_{\pi}(S) = 0$, S is automatically formal and called F_0 -space.

I heorem

If S is a pure formal elliptic space then $\mathrm{TC}_0(S)=2\mathrm{cat}_0(S)+\chi_\pi(S).$

$$\chi_{\pi}(S) = \dim \pi_{\mathit{even}}(S) \otimes \mathbb{Q} - \dim \pi_{\mathit{odd}}(S) \otimes \mathbb{Q}.$$

• $\chi_{\pi}(S) \leq 0$ and if $(\Lambda V, d)$ is a minimal model of S then $\chi_{\pi}(S) = \dim V^{even} - \dim V^{odd} = \chi_{\pi}(\Lambda V).$

• If $\chi_{\pi}(S) = 0$, S is automatically formal and called F_0 -space.

Theorem

If S is a pure formal elliptic space then $TC_0(S) = 2cat_0(S) + \chi_{\pi}(S)$.

Theorem (Jessup-Murillo-Parent, 2012)

Let $(\Lambda V, d)$ be a minimal Sullivan model of S. If the projection

$$\rho_m: (\Lambda V \otimes \Lambda V, d) \to \left(\frac{\Lambda V \otimes \Lambda V}{(\ker \mu_{\Lambda V})^{m+1}}, \bar{d} \right),$$

where $\mu_{\Lambda V} : \Lambda V \otimes \Lambda V \to \Lambda V$ is the multiplication, admits a homotopy retraction, then $TC_0(S) \leq m$.

Theorem (Carrasquel, 2017)

 $\operatorname{TC}_0(S) \leq m \Leftrightarrow \rho_m$ admits a homotopy retraction.

Note that ker $\mu_{\Lambda V}$ is the ideal of $\Lambda V \otimes \Lambda V$ generated by the elements $v \otimes 1 - \underbrace{1 \otimes v}_{V}$ where $v \in V$.

Theorem (Jessup-Murillo-Parent, 2012)

Let $(\Lambda V, d)$ be a minimal Sullivan model of S. If the projection

$$\rho_m: (\Lambda V \otimes \Lambda V, d) \to \left(\frac{\Lambda V \otimes \Lambda V}{(\ker \mu_{\Lambda V})^{m+1}}, \bar{d} \right),$$

where $\mu_{\Lambda V} : \Lambda V \otimes \Lambda V \to \Lambda V$ is the multiplication, admits a homotopy retraction, then $TC_0(S) \leq m$.

Theorem (Carrasquel, 2017)

 $TC_0(S) \le m \Leftrightarrow \rho_m$ admits a homotopy retraction.

Note that ker $\mu_{\Lambda V}$ is the ideal of $\Lambda V \otimes \Lambda V$ generated by the elements $v \otimes 1 - \underbrace{1 \otimes v}_{v}$ where $v \in V$.

< 口 > < 同 > < 回 > < 回 > < 回 > <

Theorem (Jessup-Murillo-Parent, 2012)

Let $(\Lambda V, d)$ be a minimal Sullivan model of S. If the projection

$$\rho_m: (\Lambda V \otimes \Lambda V, d) \to \left(\frac{\Lambda V \otimes \Lambda V}{(\ker \mu_{\Lambda V})^{m+1}}, \bar{d} \right),$$

where $\mu_{\Lambda V} : \Lambda V \otimes \Lambda V \to \Lambda V$ is the multiplication, admits a homotopy retraction, then $TC_0(S) \leq m$.

Theorem (Carrasquel, 2017)

 $\operatorname{TC}_0(S) \leq m \Leftrightarrow \rho_m$ admits a homotopy retraction.

Note that ker $\mu_{\Lambda V}$ is the ideal of $\Lambda V \otimes \Lambda V$ generated by the elements $\underbrace{v \otimes 1}_{v} - \underbrace{1 \otimes v}_{v'}$ where $v \in V$.

10/22

• If ρ_m admits a homotopy retraction then $H(\rho_m)$ is injective.

 Denoting by HTC(S) the least integer m for which H(ρ_m) is injective, we have

$\operatorname{zcl}_{\mathbb{Q}}(S) \leq \operatorname{HTC}(S) \leq \operatorname{TC}_{0}(S).$

• If $(\Lambda V, d)$ is a Sullivan model, we may use the notations $TC(\Lambda V)$, $HTC(\Lambda V)$, $cat(\Lambda V)$ instead of $TC_0(S)$, HTC(S), $cat_0(S)$.

- If ρ_m admits a homotopy retraction then $H(\rho_m)$ is injective.
- Denoting by HTC(S) the least integer *m* for which $H(\rho_m)$ is injective, we have

 $\operatorname{zcl}_{\mathbb{Q}}(S) \leq \operatorname{HTC}(S) \leq \operatorname{TC}_{0}(S).$

• If $(\Lambda V, d)$ is a Sullivan model, we may use the notations $TC(\Lambda V)$, $HTC(\Lambda V)$, $cat(\Lambda V)$ instead of $TC_0(S)$, HTC(S), $cat_0(S)$.

- If ρ_m admits a homotopy retraction then $H(\rho_m)$ is injective.
- Denoting by HTC(S) the least integer m for which H(ρ_m) is injective, we have

 $\operatorname{zcl}_{\mathbb{Q}}(S) \leq \operatorname{HTC}(S) \leq \operatorname{TC}_{0}(S).$

• If $(\Lambda V, d)$ is a Sullivan model, we may use the notations $TC(\Lambda V)$, $HTC(\Lambda V)$, $cat(\Lambda V)$ instead of $TC_0(S)$, HTC(S), $cat_0(S)$.

Example

We consider the homogeneous space $S = \frac{SU(6)}{SU(3) \times SU(3)}$ whose minimal Sullivan model is

$$(\Lambda V,d) = (\Lambda(x_1,x_2,y_1,y_2,z),d)$$

where $|x_1| = 4$, $|x_2| = 6$, $dx_1 = dx_2 = 0$, $dy_1 = x_1^2$, $dy_2 = x_2^2$, $dz = x_1x_2$. We will see that $TC_0(S) \ge 5$.

We first construct

$$\Omega := (x_1 - x_1')(x_2 - x_2')(z - z') - \frac{1}{2}(y_2 - y_2')(x_1 - x_1')^2 - \frac{1}{2}(y_1 - y_1')(x_2 - x_2')^2$$

which satisfies $d\Omega = 0$, $\Omega \in (\ker \mu_{\Lambda V})^3$ and $[\Omega] \neq 0$.

Example

We consider the homogeneous space $S = \frac{SU(6)}{SU(3) \times SU(3)}$ whose minimal Sullivan model is

$$(\Lambda V,d) = (\Lambda(x_1,x_2,y_1,y_2,z),d)$$

where $|x_1| = 4$, $|x_2| = 6$, $dx_1 = dx_2 = 0$, $dy_1 = x_1^2$, $dy_2 = x_2^2$, $dz = x_1x_2$. We will see that $TC_0(S) \ge 5$.

We first construct

$$\Omega := (x_1 - x_1')(x_2 - x_2')(z - z') - \frac{1}{2}(y_2 - y_2')(x_1 - x_1')^2 - \frac{1}{2}(y_1 - y_1')(x_2 - x_2')^2$$

which satisfies $d\Omega = 0$, $\Omega \in (\ker \mu_{\Lambda V})^3$ and $[\Omega] \neq 0$.

We consider the quasi-isomorphism

$$arphi: (\Lambda(x_1, x_2, y_1, y_2, z), d)
ightarrow (A, \overline{d}) = \left(rac{\Lambda(x_1, x_2)}{(x_1^2, x_2^2)} \otimes \Lambda(z), \overline{d}
ight)$$

degree
 4
 6
 13
 15
 19

$$H^*(A)$$
 $[x_1]$
 $[x_2]$
 $[x_1z]$
 $[x_2z]$
 $[x_1x_2z]$

We next construct the cocycles $\beta_1, \beta_2 \in \ker \mu_{\Lambda V}$ such that $[\Omega \beta_1 \beta_2] \neq 0$. Explicitly $\beta_1 = (x_2 - x'_2), \quad \beta_2 = (x_1 z - x_2 y_1 - x'_1 z' + x'_2 y'_1).$ We have

Since $\Omega\beta_1\beta_2 \in (\ker \mu_{\Lambda V})^5$ and $[\Omega\beta_1\beta_2] \neq 0$ it follows that $\mathrm{TC}_0(S) \geq 5$.

• Here $\operatorname{cat}_0(S) = \operatorname{dim} \pi_{odd}(S) \otimes \mathbb{Q} = 3$ (*d* is quadratic).

We consider the quasi-isomorphism

$$arphi: (\Lambda(x_1, x_2, y_1, y_2, z), d)
ightarrow (A, \overline{d}) = \left(rac{\Lambda(x_1, x_2)}{(x_1^2, x_2^2)} \otimes \Lambda(z), \overline{d}
ight)$$

degree	4	6	13	15	19
$H^*(A)$	$[x_1]$	[<i>x</i> ₂]	$[x_1z]$	$[x_2z]$	$[x_1x_2z]$

We next construct the cocycles $\beta_1, \beta_2 \in \ker \mu_{\Lambda V}$ such that $[\Omega \beta_1 \beta_2] \neq 0$. Explicitly $\beta_1 = (x_2 - x'_2), \quad \beta_2 = (x_1 z - x_2 y_1 - x'_1 z' + x'_2 y'_1)$. We have

 $[(\varphi \otimes \varphi)(\Omega \beta_1 \beta_2)] = -4[x_1 x_2 z \cdot x'_1 x'_2 z'] \neq 0.$

Since $\Omega\beta_1\beta_2 \in (\ker \mu_{\Lambda V})^5$ and $[\Omega\beta_1\beta_2] \neq 0$ it follows that $\mathrm{TC}_0(S) \geq 5$.

• Here $\operatorname{cat}_0(S) = \operatorname{dim} \pi_{odd}(S) \otimes \mathbb{Q} = 3$ (*d* is quadratic).

We consider the quasi-isomorphism

$$\varphi: (\Lambda(x_1, x_2, y_1, y_2, z), d) \to (A, \overline{d}) = \left(\frac{\Lambda(x_1, x_2)}{(x_1^2, x_2^2)} \otimes \Lambda(z), \overline{d}\right)$$

degree
 4
 6
 13
 15
 19

$$H^*(A)$$
 $[x_1]$
 $[x_2]$
 $[x_1z]$
 $[x_2z]$
 $[x_1x_2z]$

We next construct the cocycles $\beta_1, \beta_2 \in \ker \mu_{\Lambda V}$ such that $[\Omega \beta_1 \beta_2] \neq 0$. Explicitly $\beta_1 = (x_2 - x'_2), \quad \beta_2 = (x_1 z - x_2 y_1 - x'_1 z' + x'_2 y'_1)$. We have $[(\varphi \otimes \varphi)(\Omega \beta_1 \beta_2)] = -4[x_1 x_2 z \cdot x'_1 x'_2 z'] \neq 0$. Since $\Omega \beta_1 \beta_2 \in (\ker \mu_{\Lambda V})^5$ and $[\Omega \beta_1 \beta_2] \neq 0$ it follows that $\mathrm{TC}_0(S) \geq 5$.

• Here $\operatorname{cat}_0(S) = \dim \pi_{odd}(S) \otimes \mathbb{Q} = 3$ (*d* is quadratic).

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

A lower bound of TC_0 for coformal pure elliptic spaces

Definition: $(\Lambda V, d)$ is coformal if $dV \subset \Lambda^2 V$.

Theorem (Félix-Halperin)

When S is elliptic and admits a coformal Sullivan model, we have

$$\operatorname{cat}_0(S) = \dim \pi_{odd}(S) \otimes \mathbb{Q} = \dim(V^{odd})$$

Theorem (Lower bound)

Let $(\Lambda V, d)$ be a pure elliptic coformal model. For every basis ${\mathcal B}$ of V^{even} we have

 $\operatorname{cat}(\Lambda V) + L(\Lambda V, \mathcal{B}) \leq \operatorname{TC}(\Lambda V)$

or equivalently

$$\dim(V^{odd}) + L(\Lambda V, \mathcal{B}) \leq \mathrm{TC}(\Lambda V)$$

where $L(\Lambda V, \mathcal{B})$ is a certain cuplength.

A lower bound of TC_0 for coformal pure elliptic spaces

Definition: $(\Lambda V, d)$ is coformal if $dV \subset \Lambda^2 V$.

Theorem (Félix-Halperin)

When S is elliptic and admits a coformal Sullivan model, we have

$$\operatorname{cat}_0(S) = \dim \pi_{odd}(S) \otimes \mathbb{Q} = \dim(V^{odd})$$

Theorem (Lower bound)

Let $(\Lambda V, d)$ be a pure elliptic coformal model. For every basis \mathcal{B} of V^{even} , we have

$$\operatorname{cat}(\Lambda V) + L(\Lambda V, \mathcal{B}) \leq \operatorname{TC}(\Lambda V)$$

or equivalently

$$\dim(V^{odd}) + L(\Lambda V, \mathcal{B}) \leq \mathrm{TC}(\Lambda V)$$

where $L(\Lambda V, B)$ is a certain cuplength.

$L(\Lambda V, \mathcal{B})$

Suppose that $(\Lambda V, d) = (\Lambda X \otimes \Lambda Y, d)$ with $X = V^{even}$, $Y = V^{odd}$ dX = 0, $dY \subset \Lambda X$ and let $\mathcal{B} = \{x_1, \cdots, x_n\}$ be a basis of X.

We consider the extension $(\Lambda W_{\mathcal{B}}, d)$ such that $\Lambda W_{\mathcal{B}} = \Lambda(V \oplus U)$ with U is a vector space generated by u_i satisfying $du_i = x_i^2$ for all $i = 1, \dots, n$.

As *d* is a quadratic differential, it induces a bigraded differential

 $d_{p,q}: \Lambda^p X \otimes \Lambda^q (Y \oplus U) \to \Lambda^{p+2} X \otimes \Lambda^{q-1} (Y \oplus U)$

as well as a bigradation on $H(\Lambda W_B)$.

$$H_{
ho,q}(\Lambda W_eta) = rac{\ker(d_{
ho,q})}{Im(d_{
ho-2,q+1})}.$$

We define

 $L(\Lambda V, \mathcal{B}) := max\{r : \exists \alpha_1, \cdots, \alpha_r \in H_{odd,*}(\Lambda W_{\mathcal{B}}) \text{ with } \alpha_1 \cdots \alpha_r \neq 0\}.$

$L(\Lambda V, \mathcal{B})$

Suppose that $(\Lambda V, d) = (\Lambda X \otimes \Lambda Y, d)$ with $X = V^{even}$, $Y = V^{odd}$ dX = 0, $dY \subset \Lambda X$ and let $\mathcal{B} = \{x_1, \cdots, x_n\}$ be a basis of X.

We consider the extension $(\Lambda W_{\mathcal{B}}, d)$ such that $\Lambda W_{\mathcal{B}} = \Lambda(V \oplus U)$ with U is a vector space generated by u_i satisfying $du_i = x_i^2$ for all $i = 1, \dots, n$.

As d is a quadratic differential, it induces a bigraded differential

$$d_{p,q}: \Lambda^p X \otimes \Lambda^q (Y \oplus U) o \Lambda^{p+2} X \otimes \Lambda^{q-1} (Y \oplus U)$$

as well as a bigradation on $H(\Lambda W_{\mathcal{B}})$.

$$H_{p,q}(\Lambda W_eta) = rac{\ker(d_{p,q})}{Im(d_{p-2,q+1})}.$$

We define

 $L(\Lambda V, \mathcal{B}) := max\{r : \exists \alpha_1, \cdots, \alpha_r \in H_{odd,*}(\Lambda W_{\mathcal{B}}) \text{ with } \alpha_1 \cdots \alpha_r \neq 0\}.$

$L(\Lambda V, \mathcal{B})$

Suppose that $(\Lambda V, d) = (\Lambda X \otimes \Lambda Y, d)$ with $X = V^{even}$, $Y = V^{odd}$ dX = 0, $dY \subset \Lambda X$ and let $\mathcal{B} = \{x_1, \cdots, x_n\}$ be a basis of X.

We consider the extension $(\Lambda W_{\mathcal{B}}, d)$ such that $\Lambda W_{\mathcal{B}} = \Lambda(V \oplus U)$ with U is a vector space generated by u_i satisfying $du_i = x_i^2$ for all $i = 1, \dots, n$.

As d is a quadratic differential, it induces a bigraded differential

$$d_{p,q}: \Lambda^p X \otimes \Lambda^q (Y \oplus U) o \Lambda^{p+2} X \otimes \Lambda^{q-1} (Y \oplus U)$$

as well as a bigradation on $H(\Lambda W_{\mathcal{B}})$.

$$H_{p,q}(\Lambda W_eta) = rac{ \operatorname{\mathsf{ker}}(d_{p,q})}{Im(d_{p-2,q+1})}.$$

We define

$$L(\Lambda V, \mathcal{B}) := max\{r : \exists \alpha_1, \cdots, \alpha_r \in H_{odd,*}(\Lambda W_{\mathcal{B}}) \text{ with } \alpha_1 \cdots \alpha_r \neq 0\}.$$

For
$$\frac{SU(6)}{SU(3) \times SU(3)}$$
 we have

$$\Lambda V = \Lambda \begin{pmatrix} 0 & x_1^2 & x_2^2 & x_1x_2 \\ \uparrow & \uparrow & \uparrow & \uparrow \\ x_1, x_2, y_1, y_2, & z \end{pmatrix} \hookrightarrow \Lambda W_{\mathcal{B}} = \Lambda (x_1, x_2, y_1, y_2, z, u_1^{x_1^2}, u_2^{x_2^2})$$

The elements

$$\alpha_1 = x_2$$
 and $\alpha_2 = x_1 z - x_2 y_1$

are cocycles with classes in $H_{1,*}(\Lambda W_{\mathcal{B}})$.

We have $[\alpha_1][\alpha_2] \neq 0$ in $H(\Lambda W_B)$. Therefore $L(\Lambda V, B) \geq 2$. Actually we can check that $L(\Lambda V, B) = 2$.

For
$$\frac{SU(6)}{SU(3) \times SU(3)}$$
 we have

$$\Lambda V = \Lambda \begin{pmatrix} 0 & x_1^2 & x_2^2 & x_1x_2 \\ \uparrow & \uparrow & \uparrow & \uparrow \\ x_1, x_2, y_1, y_2, & z \end{pmatrix} \hookrightarrow \Lambda W_{\mathcal{B}} = \Lambda (x_1, x_2, y_1, y_2, z, u_1^{x_1^2}, u_2^{x_2^2})$$

The elements

$$\alpha_1 = x_2$$
 and $\alpha_2 = x_1z - x_2y_1$

are cocycles with classes in $H_{1,*}(\Lambda W_{\mathcal{B}})$.

We have $[\alpha_1][\alpha_2] \neq 0$ in $H(\Lambda W_B)$. Therefore $L(\Lambda V, B) \geq 2$. Actually we can check that $L(\Lambda V, B) = 2$.

э

An upper bound of TC_0 for certain pure elliptic spaces

Theorem

Let $(\Lambda V, d)$ be a Sullivan model and $(\Lambda V \otimes \Lambda U, d)$ be an extension of $(\Lambda V, d)$ with U is a vector space concentrated in odd degrees such that $dU \subset \Lambda V$, then

 $\operatorname{TC}(\Lambda V \otimes \Lambda U) \leq \operatorname{TC}(\Lambda V) + \dim U.$

Theorem (Upper bound)

Let $(\Lambda V, d)$ be a pure elliptic minimal Sullivan model. If there exist

- an extension (ΛZ, d) ↔ (ΛV, d) where Z^{even} = V^{even} and (ΛZ, d) is an F₀-model
- an integer k such that $dV \subset \Lambda^k V$

then

 $\operatorname{TC}(\Lambda V) \leq 2\operatorname{cat}(\Lambda V) + \chi_{\pi}(\Lambda V)$

An upper bound of TC_0 for certain pure elliptic spaces

Theorem

Let $(\Lambda V, d)$ be a Sullivan model and $(\Lambda V \otimes \Lambda U, d)$ be an extension of $(\Lambda V, d)$ with U is a vector space concentrated in odd degrees such that $dU \subset \Lambda V$, then

 $\operatorname{TC}(\Lambda V \otimes \Lambda U) \leq \operatorname{TC}(\Lambda V) + \dim U.$

Theorem (Upper bound)

Let $(\Lambda V, d)$ be a pure elliptic minimal Sullivan model. If there exist

- an extension $(\Lambda Z, d) \hookrightarrow (\Lambda V, d)$ where $Z^{even} = V^{even}$ and $(\Lambda Z, d)$ is an F_0 -model
- an integer k such that $dV \subset \Lambda^k V$

then

```
\operatorname{TC}(\Lambda V) \leq 2\operatorname{cat}(\Lambda V) + \chi_{\pi}(\Lambda V).
```

Corollary

Let $(\Lambda V, d)$ be a pure coformal elliptic Sullivan model. Assume that there exists an extension $(\Lambda Z, d) \hookrightarrow (\Lambda V, d)$ where $(\Lambda Z, d)$ is an F_0 -model satisfying $Z^{even} = V^{even}$. Then

$$\operatorname{TC}(\Lambda V) \leq 2\operatorname{cat}(\Lambda V) + \chi_{\pi}(\Lambda V) = \dim V.$$

Example

For $\frac{SU(6)}{SU(3)\times SU(3)}$ we have $(\Lambda Z, d) \hookrightarrow (\Lambda V, d) = (\Lambda(x_1, x_2, y_1, y_2, z), d)$ where

- $(\Lambda Z, d) = (\Lambda(x_1, x_2, y_1, y_2), d)$ is an F_0 -model.
- $\chi_{\pi}(\Lambda V) = -1$, $\operatorname{cat}(\Lambda V) = 3 = \operatorname{dim} V^{odd}$

• Conclusion: $TC(\Lambda V) \le 5$ and finally $TC_0(S) = 5$.

ヘロト ヘヨト ヘヨト

Corollary

Let $(\Lambda V, d)$ be a pure coformal elliptic Sullivan model. Assume that there exists an extension $(\Lambda Z, d) \hookrightarrow (\Lambda V, d)$ where $(\Lambda Z, d)$ is an F_0 -model satisfying $Z^{even} = V^{even}$. Then

$$\Gamma C(\Lambda V) \leq 2 \operatorname{cat}(\Lambda V) + \chi_{\pi}(\Lambda V) = \dim V.$$

Example

For $\frac{SU(6)}{SU(3)\times SU(3)}$ we have $(\Lambda Z, d) \hookrightarrow (\Lambda V, d) = (\Lambda(x_1, x_2, y_1, y_2, z), d)$ where

- $(\Lambda Z, d) = (\Lambda(x_1, x_2, y_1, y_2), d)$ is an F_0 -model.
- $\chi_{\pi}(\Lambda V) = -1$, $\operatorname{cat}(\Lambda V) = 3 = \dim V^{odd}$.
- Conclusion: $TC(\Lambda V) \leq 5$ and finally $TC_0(S) = 5$.

Theorem

For any model of the form $(\Lambda V, d) = (\Lambda(x_i, u_i, y), d)$ with $dx_i = 0$, $du_i = x_i^2$ for all $i = 1, \dots, n$ and $dy = \sum_{i,j} \lambda_{i,j} x_i x_j$. We have

$$\operatorname{TC}(\Lambda V) = 2\operatorname{cat}(\Lambda V) + \chi_{\pi}(\Lambda V) = \dim V.$$

Note that by the upper bound theorem and by considering the extension $\Lambda(x_i, u_i) \hookrightarrow \Lambda(x_i, u_i, y)$ we have

$$\operatorname{TC}(\Lambda V) \leq 2\mathrm{cat}(\Lambda V) + \chi_{\pi}(\Lambda V) = 2n + 1.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Theorem

For any model of the form $(\Lambda V, d) = (\Lambda(x_i, u_i, y), d)$ with $dx_i = 0$, $du_i = x_i^2$ for all $i = 1, \dots, n$ and $dy = \sum_{i,j} \lambda_{i,j} x_i x_j$. We have

$$\operatorname{TC}(\Lambda V) = 2\operatorname{cat}(\Lambda V) + \chi_{\pi}(\Lambda V) = \dim V.$$

Note that by the upper bound theorem and by considering the extension $\Lambda(x_i, u_i) \hookrightarrow \Lambda(x_i, u_i, y)$ we have

$$\operatorname{TC}(\Lambda V) \leq 2\operatorname{cat}(\Lambda V) + \chi_{\pi}(\Lambda V) = 2n + 1.$$

く 何 ト く ヨ ト く ヨ ト

э

• We consider the quasi-isomorphism

$$\varphi: (\Lambda(x_i, u_i, y), d) \to (A, \overline{d}) = \left(\frac{\Lambda(x_i)}{(x_i^2)} \otimes \Lambda(y), \overline{d}\right)$$

• There exists a cocycle $\Omega \in (\ker \mu_{\Lambda V})^{n+1}$ with

$$(\varphi \otimes \varphi)(\Omega) = (-1)^n \prod_{i=1}^n (x_i - x'_i)(y - y').$$

- Construction of an explicit cocycle β ∈ (ker μ_{ΛV})ⁿ such that (φ ⊗ φ)(Ω · β) is the top class of A ⊗ A.
- In conclusion $TC(\Lambda V) \ge 2n + 1$ and $TC(\Lambda V) = 2n + 1 = \dim V$.

Work in progress

- Investigate the calculation and properties of the cuplength $L(\Lambda V, B)$.
- Extend the obtained results to other classes of elliptic spaces.

References

- Carrasquel, J. G. *The rational sectional category of certain maps.* Ann. Sc. Norm. Super. Pisa Cl. Sci. (2017).
- Fernández Suárez, L., Ghienne, P., Kahl, T., Vandembroucq, L. *Joins* of DGA modules and sectional category. AGT (2006).
- Félix, Y., Halperin, S. *Rational LS category and its applications,* Trans. Amer. Math. Soc.(1982).

Work in progress

- Investigate the calculation and properties of the cuplength $L(\Lambda V, B)$.
- Extend the obtained results to other classes of elliptic spaces.

References

- Carrasquel, J. G. *The rational sectional category of certain maps.* Ann. Sc. Norm. Super. Pisa Cl. Sci. (2017).
- Fernández Suárez, L., Ghienne, P., Kahl, T., Vandembroucq, L. *Joins* of *DGA modules and sectional category*. AGT (2006).
- Félix, Y., Halperin, S. *Rational LS category and its applications,* Trans. Amer. Math. Soc.(1982).

Work in progress

- Investigate the calculation and properties of the cuplength $L(\Lambda V, B)$.
- Extend the obtained results to other classes of elliptic spaces.

References

- Carrasquel, J. G. *The rational sectional category of certain maps.* Ann. Sc. Norm. Super. Pisa Cl. Sci. (2017).
- Fernández Suárez, L., Ghienne, P., Kahl, T., Vandembroucq, L. Joins of DGA modules and sectional category. AGT (2006).
- Félix, Y., Halperin, S. *Rational LS category and its applications,* Trans. Amer. Math. Soc.(1982).

- Hamoun, S., Rami, Y., Vandembroucq, L. *On the rational topological complexity of coformal elliptic spaces* JPAA (2023).
- Jessup, B., Murillo, A., Parent, P.-E. *Rational topological complexity*. AGT (2012).
- Lechuga, L., Murillo, A. *Topological complexity of formal spaces*. Contemp. Math (2007).
- Lechuga, L., Murillo, A. A formula for the rational LS-category of certain spaces. Ann. Inst. Fourier(2002).
- Lupton, G. *The Rational Toomer Invariant and Certain Elliptic Spaces*, Contemporary Mathematics (2004).