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Topological complexity of a space X , TC(X ), is introduced by M. Farber
which is seen as the sectional category, secat(∆X ), of the diagonal map
∆X : X → X × X . If f : X → Y is a continuous map, secat(f ) is the smallest
integer m for which there are m + 1 local homotopy sections si : Ui → Y for f
whose sources form an open covering of X . Later, Y. Rudyak generalizes
Farber’s concept and introduces that of higher topological complexity, TCn(X )
(n ≥ 2), which turns out to be the sectional category secat(∆n

X ) of the
n-diagonal ∆n

X : X → X n.
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Determining TCn(X ) is as difficult as it is in the case of
Lusternik-Scnirelmann category catLS(X ) = secat(∗ ↪→ X ), however thanks
to rational homotopy theory methods, it is possible to establish better
approximation of this latter, namely catLS(X0) ≤ catLS(X ) with X0 denoting the
rationalization X0 of X .

Then, J. Carrasquel used the characterization à la Félix-Halperin to give an
explicit definition of the higher topological complexity TCn(X0) that turns out
to lower TCn(X ) (cf. Definition 4.1 below), and he also introduced higher
(rational) homology (resp. module) topological complexity HTCn(X ), (resp.
MTCn(X )) and showed that they interpolate zcln(X ) := nilkerH∗(∆n

X ) and
TCn(X0).
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We are interested in the study of the invariant HTCn(X ) when X is a
Gorenstein space. Gorenstein spaces were introduced to provide new
characterizations of spaces that satisfy Poincaré duality . They give so much
interest to the invariant

ExtC∗(X ;K)(K,C∗(X ;K)),

where K is a field.
Inspired by Carrasquel’s characterizations we introduce Ext-versions of the

topological complexities mentioned earlier.
First we shall recall some definitions and properties used throughout this

work.
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A differential graded algebra (A, d) (dga for short) is a graded algebra A
together with a linear map d : A→ A of degree |d | = +1 that is a derivation :
d(ab) = d(a)b + (−1)|a|ad(b), and satisfying d ◦ d = 0.

A morphism of dga f : (A, d)→ (B, d) is a linear map of degree zero
satisfying f (aa′) = f (a)f (a′), and the compatibility with the differential d :
f (da) = d(f (a)).

A dga algebra A is said to be augmented if it is endowed with a morphism
ε : A→ K of graded algebras.

A (left) graded (A, d) module is a graded module M equipped with a linear
map A⊗M → M, a⊗m 7→ am of degree zero such that a(bm) = (ab)m and
1m = m, and a differential d satisfying
d(am) = (da)m + (−1)|a|a(dm), m ∈ M, a ∈ A.

A morphism of (left) graded modules over a dga (A, d) is a morphism
f : (M, d)→ (N, d) compatible with the differential : d ◦ f = f ◦ d .

A left (A, d)-module (M, d) is said semi-free if it is the union of an
increasing sequence M(0) ⊂ M(1) ⊂ M(2) · · · ⊂ M(n) ⊂ · · · of sub
(A, d)-modules such that M(0) and each M(i)/M(i − 1) is A-free on a basis
of cycles.
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A semi-free resolution of an (A, d)-module (M, d) is an (A, d)-semi-free

module (P, d) together with a quasi-isomorphism m : (P, d) (M, d)
' of

(A, d)-modules.

Particularly, let (P, d) (Q, 0)
' be an (A, d)-semi-free resolution of

(Q, 0). This defines the graded (A, d)-module

HomA((P, d), (A, d)) =
⊕
p≥0

Homp,∗
A ((P, d), (A, d)) =

⊕
p≥0

⊕
i≥0

HomA(P i ,Ai+p),

which, endowed with the differential

D(f ) = d ◦ f − (−1)pf ◦ d ; f ∈ Homp,∗
A ((P, d), (A, d)),

yields the Eilenberg-Moore Ext functor :

Ext(A,d)(K, (A, d)) = H∗(HomA((P, d), (A, d)),D).

This is an invariant up to homotopy of differential graded algebras, and if
(A, d)

'−→ (B, d) is a quasi-isomorphism of differential graded algebras, then
Ext(A,d)(K, (A, d)) is identified with Ext(B,d)(K, (B, d))
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Let (P, d)
'→ (K, 0) be a minimal (A, d)-semifree resolution of (K, 0).

Consider the chain map

Hom(A,d)((P, d), (A, d)) −→ (A, d)

given by f 7→ f (z), where z ∈ P is a cocycle representing 1 in K. Passing to
homology, we obtain the natural map

ev(A,d) : Ext(A,d)(K, (A, d)) −→ H∗(A, d),

called the evaluation map of (A, d). The definition of ev(A,d) is independent of
the choice of (P, d) and z. The evaluation map of X over K is by definition
the evaluation map of (C∗(X ,K), d).

A Poincaré duality algebra over K is a graded algebra H = {Hk}0≤k≤N

such that HN = Kα and the pairing < β, γ > α = βγ, β ∈ Hk , γ ∈ HN−k

defines an isomorphism Hk ∼=→ HomK(HN−k ,K), 0 ≤ k ≤ N. A Poincaré
space at K is a space whose cohomology with coefficients in K is a Poincaré
duality algebra.

A differential graded algebra (A, d) is called Gorenstein if the vector space
Ext(A,d)(K, (A, d)) has dimension one. A space X is called Gorenstein over K
if the cochain algebra C∗(X ;K) is a Gorenstein algebra.

For a simply connected finite CW complex, C∗(X ;K) is Gorenstein if and
only if H∗(X ;K) is a Poincare duality algebra.
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Let X be a simply-connected finite type CW-complex and (P, d) a semi-free
resolution of Q and (ΛV , d)

'→ C∗(X ,Q) its minimal Sullivan model and .
Recall that a Sullivan algebra is a free cdga (ΛV , d), where

(ΛV , d) = Exterior(V odd )⊗ Symmetric(V even)

generated by the graded K-vector space V = ⊕i≥0Vi which has a well
ordered basis {xα}α∈I such that dxα ∈ ΛV<α (ΛV<α = span {vγ,γ<α}).

Let A and A denote respectively HomA((P, d), (A, d)) and ExtΛV (Q,ΛV ).
Let f , g : P → S in A,

f · g := µExt (f ⊗ g) : P ⊗ΛV P −→ ΛV

x ⊗ y 7−→ (−1)|g||x|f (x)g(y).

∗ f · g is a ΛV -morphism.

∗ P ⊗ΛV P is an (ΛV , d)-semifree resolution of Q.

We obtain a well-defined map of vector spaces (multiplication)

µExt : A⊗Q A −→ A
[f ]⊗ [g] 7−→ [f · g]
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∗ µExt has a unit element.
Indeed, consider ε̃ : ΛV ⊗ ΛsV → ΛV the composition i ◦ (ε⊗ εΛsV )
where ε : ΛV → Q is the augmentation, and the map

θ = IdΛV⊗ΛsV ⊗ εΛsV : ΛV ⊗ ΛsV ⊗ ΛsV −→ ΛV ⊗ ΛsV
1⊗ sv ⊗ 1 7−→ 1⊗ sv ;

1⊗ sv ⊗ sw 7−→ 0;
1⊗ 1⊗ sv 7−→ 0

makes the following diagram commutative :

Q ΛV ⊗ ΛsV

ΛV ⊗ ΛsV ⊗ ΛsV ΛV .

'

f'
θ

f ·ε̃

Passing to cohomology, we get [f ] · [ε̃] = [f ] and similarly [ε̃] · [f ] = [f ].
Henceforth, the class [ε̃] defines a unit element for µA.
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∗ µExt is commutative.
Let τ be the flip map τ : P ⊗S P → P ⊗S P ; x ⊗ y 7→ (−1)|x||y|y ⊗ x .
The diagram

P ⊗S P

P ⊗S P ΛV

(−1)|f ||g|g·f
τ

f ·g

is commutative.
τ being a quasi-isomorphism, [f ] · [g] = (−1)|f ||g|[g] · [f ] thus the
multiplication on A is commutative.

We respectively conclude that A is a homotopy commutative differential
graded algebra with unit and A is a graded commutative Q-algebra with unit.
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Finally, it is clear that the following diagram, where cev is the chain
evaluation map of (ΛV , d), is commutative :

A⊗ A A

(ΛV , d)⊗ (ΛV , d) (ΛV , d)

cev⊗cev cev

µΛV

Thus, passing to cohomology, we deduce that the evaluation map is a
morphism of graded algebra.

Theorem 1.
The Q-vector space Ext(S,d)(Q, (S, d)), endowed with µExt , is a graded

commutative algebra with unit. And the evaluation map
Ext(ΛV ,d)(Q, (ΛV , d))→ H∗(X ;Q) is a morphism of algebras.
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Let (A, d) be any cdga model for a space X , and θ : (ΛV , d)
'→ (A, d) its

minimal Sullivan model. The cdga morphism

µθn := (IdA, θ, . . . , θ) : (A, d)⊗ (ΛV , d)⊗n−1 → (A, d)

is a special model, called an s-model, for the path fibration πn : X I → X n.

definition 1.
(a) : TCn (X0) is the least m such that the projection

ρm :
(

A⊗ (ΛV )⊗n−1, d
)
→

(
A⊗ (ΛV )⊗n−1(

ker µθn
)m+1 , d

)

admits an algebra retraction.

(b) : mTCn(X,Q) is the least m such that ρm admits a retraction as(
A⊗ (ΛV )⊗n−1, d

)
-module.

(c) : HTCn(X ,Q) is the least m such that H (ρm) is injective.

(d) : nil ker H∗(∆n
X ,Q) is the longest non trivial product of elements of
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We have the following :

nil ker H∗(∆n
X ,Q) ≤ HTCn(X ,Q) ≤ mTCn(X,Q) ≤ TCn (X0) ≤ TCn (X ) .

In a similar way, we put µA,n : A⊗n → A and µA,n : A⊗n → A where
A = HomΛV ((P, d), (ΛV , d)) and A := H(A) = Ext(ΛV ,d)((P, d), (ΛV , d)). We
introduce Ext-version of the previous invariants :

definition 2.
(a) : TCExt

n (X ,Q) is the least m such that the projection

Γm :
(
A⊗n, d

)
→

(
A⊗n

(ker (µA,n))m+1 , d

)

admits a homotopy retraction.

(b) : mTCExt
n(X,Q) is the least m such that Γm admits a homotopy retraction

as (A, d)-module.

(c) : HTCExt
n (X ,Q) is the least m such that H (Γm) is injective.

(d) : nil ker (µA,n,Q) is the longest non trivial product of elements of
ker (µA,n).
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The analogous statement holds

nil ker (µA,n,Q) ≤ HTCExt
n (X ,Q) ≤ mTCExt

n (X ,Q) ≤ TCExt
n (X0) .

The projections

Γm :
(
A⊗n, d

)
→

(
A⊗n

(ker (µA,n))m+1 , d

)
and ρm :

(
(ΛV )⊗n, d

)
→

(
(ΛV )⊗n

(ker µn)m+1 , d

)

induce two short exact sequences linked by chain evaluation maps

0 (ker (µA,n))m+1 A⊗n A⊗n

(ker(µA,n))m+1 0

0 (kerµn)m+1 (ΛV )⊗n (ΛV )⊗n

(ker µn)m+1 0.

Γm

θ

ρm

Passing to cohomology, we get two (long) exact sequences that allows the
following
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Theorem 2.
Let X be a 1-connected finite type CW-complex. If X is a Gorenstein space

over Q and evC∗(X ,Q) 6= 0, then HTCExt
n (X ,Q) ≤ HTCn(X ,Q) for any integer

n ≥ 2. Furthermore, if (ΛV , d) is a Sullivan minimal model of X and
m = HTCExt

n (X ,Q), then

HTCn(X ,Q) = HTCExt
n (X ,Q) =: m⇔


f (1)⊗n /∈ (ker µn)m+1,

∀z ∈ (ker µn)m+1, dz = 0
⇒ ∃z′ ∈ (ΛV )⊗n | z = dz′

Corollary.
For each of the following conditions :

(a) X is rationally elliptic,

(b) H>N(X ,Z) = 0, for some N, and X is a Gorenstein space over Q,

(c) X is a finite 1-connected CW-complex and its Spivak fiber FX has finite
dimensional cohomology,

we have HTCExt
n (X ) ≤ HTCn(X ), for any integer n ≥ 2.
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Remark.
An equivalent definition of HTCn(X ,Q) when X is a Poincaré duality space

reads as follows : It is the smallest integer m ≥ 0 such that some cocycle ω
representing the fundamental class of (ΛV , d)⊗n, can be written as a product
of m elements of ker(µn) (not necessarily cocycles). Similarly, for any
Gorenstein space X , HTCExt

n (X ,Q) is the smallest integer m such that some
cocycle representing the fundamental class of A⊗n, namely Ω = [f ]⊗n where
[f ] designates the generating element of AN , can be written as a product of
length m of elements in ker(µA,n). Therefore, in order to determine
HTCn(X ,Q) we may, using the precedent theorem, calculate
m = HTCExt

n (X ,Q) which is quite simpler since A∗ is one dimensional, and
afterwards deal with the obstruction to have the equality.
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The Adams-Hilton model of an arbitrary CW-complex X over an arbitrary
field K is a chain algebra quasi-morphism θX : (TV , d) C∗(ΩX ;K)

' i.e.

H∗(θX ) is an isomorphism of graded algebras. Here V satisfies
Hi−1(V , d1) ∼= Hi (X ;K) and d1 : V → V is the linear part of d . (TV , d) is
called a free model of X .

Let K be a field with odd characteristic (thus containing 1
2 ) and X is a

q-connected (q ≥ 1) finite CW-complex such that dim X ≤ q · char(K) i.e.
X ∈ CWq(K) it has a minimal Sullivan model (ΛW , d). Therefore, using
properties of Ext established earlier, we obtain

Ext(ΛW ,d)(K, (ΛW , d)) ∼= Ext(TV ,d)(K, (TV , d)),

thus yields the following

Proposition.
Let X ∈ CWq(K). Then, the graded vector spaces ExtC∗(X ;K)(K,C∗(X ;K))

and ExtC∗(ΩX ;K)(K,C∗(ΩX ;K)) have isomorphic graded commutative algebra
structures with unit.
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Ext(TV ,d)(K, (TV , d)) is, as in the rational case, obtained in terms of the
acyclic closure of K of the form (TV ⊗ (K⊕ sV ), δ), where the differential δ
satisfies δs + sd = id , d being the differential of TV . That is, for any element
z ⊗ sv of TV ⊗ (K⊕ sV ), we have

δ(z ⊗ sv) = dz ⊗ sv + (−1)|z|zv ⊗ 1− (−1)|z|z ⊗ sdv .

Notice that any element f in Homp
(TV ,d)((TV ⊗ (K⊕ sV ), δ), (TV , d)) is

entirely determined by its image of 1⊗ (K⊕ sV ) since TV ⊗ (K⊕ sV ) is a
left (TV , d)-module acting on the first factor. Thus we have

(D(g))(1⊗ sv) = d ◦ f (1⊗ sv)− (−1)pf ◦ δ(1⊗ sv)

= df (1⊗ sv)− (−1)p(|v|+1)vf (1) + (−1)pf (1⊗ sdv).
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A straightforward argument allows the following

(a) g ∈ Im(D)⇔ g(1⊗ sv) =
df (1⊗ sv)− (−1)p(|v|+1)vf (1) + (−1)pf (1⊗ sdv) for some f .

(b) f ∈ Ker(D)⇔ df (1⊗ sv) = (−1)p(|v|+1)vf (1)− (−1)pf (1⊗ sdv).

Using the standard convention A−p = Ap, for all q ∈ Z and the equations
obtained, we calculate Ext for a space X = Sq ∪ϕ eq+1, q ≥ 2, the space
where the cell eq+1 is attached by a map of degree r . The Adams-Hilton
model of X has the form (TV , d) where V is a K-vector space generated by a
and a′ with deg(a) = q − 1, deg(a′) = q, da = 0 and da′ = −ra.
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Notice that we have two cases since we have
H∗(X ,Z) = H0(X ,Z)⊕ Hq(X ,Z) ∼= Z⊕ Z/rZ

(i) If char(K) = 0 or co-prime with r , we have H∗(X ,K) = H0(X ,K) ∼= K.
In this case, H∗(X ,K) has formal dimension fd(X ) = 0, thus, it is a
Poincaré duality space. Moreover, since it has finite dimensional
cohomology, it is also a Gorenstein space. Explicit calculations conclude
that Ext0

(TV ,d)(Q, (TV , d)) = Q and for i 6= 0, Ext i
(TV ,d)(Q, (TV , d)) = 0.

(ii) If char(K) divides r then,
H∗(X ,K) = H0(X ,K)⊕ Hq(X ,K)⊕ Hq+1(X ,K) ∼= K⊕K⊕K. Thus,
since q ≥ 2, X is neither a Poincaré duality space nor a Gorenstein
space. In this case, fd(X ) = q + 1, so that
Extk

(TV ,d)(K, (TV , d)) = 0,∀k > q + 1.
Following the same computation process as in the first case we

recover the previous inequality, however we might have
Ext−i

(TV ,d)(K, (TV , d)) = 0 for finitely many i ≥ −(q + 1) (e.g. for q = 7
we have Ext7

(TV ,d)(K, (TV , d)) = 0).
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