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Cohomological point of view

X compact complex manifold, dimC X = n.

1 De Rham cohomology (depends only on the di�erential
structure): ∀k = 0, · · · , 2n

Hk
DR(X ,C) =

ker{d : C∞
k (X ,C) −→ C∞

k+1
(X ,C)}

Im {d : C∞
k−1

(X ,C) −→ C∞
k (X ,C)}

with ∆ = dd∗ + d∗d is the Laplacian associated to the De
Rham cohomology which is self-adjoint and elliptic.

2 For every constant h ∈ R \ {0}, let

dh := h∂ + ∂̄ : C∞
k (X ,C) −→ C∞

k+1
(X ,C), k ∈ {1, · · · , 2n}
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the linear maps:

θh : ΛkT ∗X −→ ΛkT ∗X , u =
∑

p+q=k

up,q 7−→ θhu :=
∑

p+q=k

hpup,q,

are isomorphisms for h ̸= 0 and the operators d and dh are related
by

dh = θhdθ
−1

h .

Then d2

h = 0 inducing the dh-cohomology

Hdh(X ,C) =
ker dh
Im dh

When a Hermitian metric ω has been �xed on X , the formal adjoint
d⋆
h of dh w.r.t. ω induces together with dh a Laplace-type operator

in the usual way:

∆h := dh d
⋆
h + d⋆

hdh : C∞
k (X , C) −→ C∞

k (X , C),

for every k ∈ {0, . . . , 2n}. This h-Laplacian is elliptic (cf.
[Pop17]).
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1 X is an h-∂∂̄-manifold if for every k ∈ {0, 1, . . . , 2n} and
every k-form u ∈ ker dh ∩ ker d−h−1 , the following exactness
conditions are equivalent:

u ∈ Im dh ⇐⇒ u ∈ Im d−h−1 ⇐⇒ u ∈ Im d
⇐⇒ u ∈ Im (dh d−h−1) = Im (∂∂̄).
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Proposition [B22]

Let h ∈ R \ {0} be an arbitrary constant. Let X be a compact
complex h-∂∂̄-manifold with dimC X = n.

1 Every dh-cohomology class contains a d-closed representative.

2 Let k ∈ {0, · · · , 2n}. The following map

F : Hk
dh
(X ,C) −→ Hk

DR(X ,C)
[α]h 7−→ {α}

is well de�ned. Moreover, F is an isomorphism.
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1 Aeppli cohomology is de�ned, for any p, q ∈ {0, 1, · · · , n},
by:

Hp,q
A (X ,C) =

ker ∂∂̄

(Im ∂ + Im ∂̄)

One de�nes the operator

∆A := ∂∂∗+∂̄∂̄∗+(∂∂̄)∗(∂∂̄)+(∂∂̄)(∂∂̄)∗+(∂∂̄∗)(∂∂̄∗)∗+(∂∂̄∗)∗(∂∂̄∗)

The 4th order Aeppli Laplacian is self-adjoint and elliptic. One
obtains

C∞
p,q(X ,C) = ker∆A ⊕ ( Im ∂ + Im ∂̄)⊕ Im (∂∂̄)∗

ker∆A = ker ∂∗ ∩ ker ∂̄∗ ∩ ker (∂∂̄)

Hodge isomorphism: Hp,q
A (X ,C) ≃ ker∆A = Hp,q

A (X ,C).
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1 h-Aeppli cohomology is de�ned, for any k = 0, · · · , 2n, as

Hk
h,A(X ,C) =

ker dhdh−1

(Im dh + Im dh−1)

where all the vector spaces involved are subspaces of the space
C∞
k (X ,C) of smooth k-forms on X .

[BP18]

Hk
h,A(X ,C) =

⊕
p+q=k

Hp,q
A (X ,C)
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Proposition

For every h ∈ R \ {0}. Let X be a compact complex h-∂∂̄-manifold
with dimC X = n.

1 Every dhd−h−1-cohomology class contains a dh-closed
representative.

2 The following map

G : Hk
h,A(X ,C) −→ Hk

dh
(X ,C)

[Ω]h,A 7−→ [Ω]dh

is well de�ned. Furthermore G is an isomorphism.
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Metrical point of view

Let Ω be a C∞ strictly weakly positive (p, p)−form on X . Ω is
called

∃αi ,2p−i ∈ C∞
i ,2p−i (X ,C) for i ∈ {0, · · · , p − 1} =⇒ ∂∂̄Ω = 0

d(
∑p−1

i=0
αi ,2p−i +Ω+

∑p−1

i=0
αi ,2p−i ) = 0 (p − SKT [B19])

(p − HS [B19])
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For every h ∈ R \ {0},
1 ω is called h-strongly Gauduchon (h-sG) metric if there

exists Ωn−2,n ∈ C∞
n−2,n(X ,C) such that

dh

(
1

h
Ωn−2,n + ωn−1 + hΩn−2,n

)
= 0.

2 Ω is called hp-Hermitian symplectic (hp-HS) form if there
exist Ωi ,2p−i ∈ C∞

i ,2p−i (X ,C) and Ω2p−i ,i ∈ C∞
2p−i ,i (X ,C) with

i = 0, · · · , p − 1 such that

dh

( p−1∑
i=0

Ωi ,2p−i +Ω+

p−1∑
i=0

Ω2p−i ,i

)
= 0.

3 X is said to be h-sG (resp. hp-HS) manifold if there exists
an h-sG metric (resp. hp-HS form) on X .
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h − sG ⇐⇒ sG

∀u ∈ ker dh ∩ ker d−h−1 ; =⇒ h − sG
u ∈ Im d−h−1 =⇒ u ∈ Im dhd−h−1

=⇒ h − Gauduchon
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X is hp − HS + p = n − 1 =⇒ X is either sG or balanced

On the h-∂∂̄-manifold, one has:

hp − HS ⇐⇒ p − SKT .
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Let X be a complex manifold and let ∆ be an open ball containing
the origin in Cm for some m ∈ N∗.

A holomorphic family of compact complex manifolds is a proper
holomorphic submersion π : X −→ ∆.

By a result of Ehresmann ([Voi07], Theorem 9.3), all the �bres
Xt := π−1(t), for all t ∈ ∆, are C∞-di�eomorphic to a �xed C∞

manifold X . Therefore, the holomorphic family (Xt)t∈∆ of compact
complex manifolds can be viewed as a single C∞ manifold X
endowed with a C∞ family of complex structures (Jt)t∈∆.
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Main result

Theorem

For every h ∈ R \ {0} an arbitrary constant. Let π : X 7−→ ∆ be a

holomorphic family of compact complex manifolds of dimension n
and p ∈ {0, · · · , n}. If X0 is a p-SKT h-∂∂̄-manifold, then Xt is a

p-SKT h-∂∂̄-manifold for every t ∈ ∆, after possibly shrinking ∆
about 0.
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Theorem

Let (Xt)t∈∆ be a holomorphic family of compact complex

manifolds. If X0 is an hp-HS h-∂∂̄-manifold for some h ∈ R \ {0},
then Xt is an hp-HS h-∂∂̄-manifold for every t ∈ ∆ close enough to

0.

Proof Suppose that X0 is an hp-HS h-∂∂̄-manifold. There exist
Ωi ,2p−i ∈ C∞

i ,2p−i (X ,C) and Ω2p−i ,i ∈ C∞
2p−i ,i (X ,C) for

i = 0, · · · , p − 1 such that

dhΩ̃ = dh

(
p−1∑
i=0

Ωi ,2p−i +Ω+

p−1∑
i=0

Ω2p−i ,i

)
= 0.

Ω̃ is a dh-closed 2p-form on X0. Then,
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dΩ̃ = −ddhu

where u is a (2p − 1)-form. The splitting of u into pure-type forms
reads:

u =

p−1∑
i=0

ui ,2p−i−1 +

p−1∑
i=0

u2p−i−1,i . (1)

Applying ∂∂̄ to the equation (1) implies that

Ψ : =

p−1∑
i=0

(
Ωi ,2p−i + (1− h) ∂̄ui ,2p−i−1

)
+Ω+

∑p−1

i=0

(
Ω2p−i ,i − (1− h) ∂u2p−i−1,i

)
is a d-closed (2p)-form such that Ω is its component of type (p, p).
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(Ωt)t∈∆: the smooth family of component of Ψ of type (p, p) for
the complex structure Jt of Xt .

The forms Ωt vary in a C∞ way with t ∈ ∆ for t close to 0.
Additionally, Ω > 0 implies that Ωt > 0 for t close to 0 (cf. [B19]).
Note by

Ψt =

p−1∑
i=0

Ωi ,2p−i
t +Ωt +

p−1∑
i=0

Ω2p−i ,i
t

the d-closed 2p-form on Xt with Ωt is its component of type (p, p).
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This implies that Ωt is a ∂t ∂̄t-closed (p, p)-form on Xt . The
h-∂∂̄-property is deformation-open (cf. [BP18]). Consequently, Xt

is an hp-HS h-∂∂̄-manifold for any t close to 0.
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