Classification of compact complex manifolds

Houda BELLITIR

Moulay Ismail University, faculty of sciences, Meknes, Morocco

First International Conference on Algebraic Topology and its Applications in Robotics In Honor of Professor Mohamed Rachid HILALI

March 18th, 2023

Houda BELLITIR Classification of compact complex manifolds

Cohomological point of view

X compact complex manifold, $\dim_{\mathbb{C}} X = n$.

O De Rham cohomology (depends only on the differential structure): ∀k = 0, · · · , 2n

$$H^k_{DR}(X,\mathbb{C}) = \frac{\ker\{d: C^\infty_k(X,\mathbb{C}) \longrightarrow C^\infty_{k+1}(X,\mathbb{C})\}}{\operatorname{Im} \{d: C^\infty_{k-1}(X,\mathbb{C}) \longrightarrow C^\infty_k(X,\mathbb{C})\}}$$

with $\Delta = dd^* + d^*d$ is the Laplacian associated to the De Rham cohomology which is self-adjoint and elliptic.

2 For every constant $h \in \mathbb{R} \setminus \{0\}$, let

$$d_h := h\partial + \bar{\partial} : C^\infty_k(X, \mathbb{C}) \longrightarrow C^\infty_{k+1}(X, \mathbb{C}), \quad k \in \{1, \cdots, 2n\}$$

the linear maps:

$$\theta_h : \Lambda^k T^* X \longrightarrow \Lambda^k T^* X, \quad u = \sum_{p+q=k} u^{p,q} \longmapsto \theta_h u := \sum_{p+q=k} h^p u^{p,q},$$

are isomorphisms for $h \neq 0$ and the operators d and d_h are related by

$$d_h = \theta_h d\theta_h^{-1}$$

Then $d_h^2 = 0$ inducing the d_h -cohomology

$$H_{d_h}(X,\mathbb{C}) = rac{\ker d_h}{\operatorname{Im} d_h}$$

When a Hermitian metric ω has been fixed on X, the formal adjoint d_h^{\star} of d_h w.r.t. ω induces together with d_h a Laplace-type operator in the usual way:

$$\Delta_h := d_h d_h^\star + d_h^\star d_h : C_k^\infty(X, \mathbb{C}) \longrightarrow C_k^\infty(X, \mathbb{C}),$$

for every $k \in \{0, ..., 2n\}$. This **h-Laplacian** is elliptic (cf. [Pop17]).

 X is an h-∂∂-manifold if for every k ∈ {0, 1, ..., 2n} and every k-form u ∈ ker d_h ∩ ker d_{-h⁻¹}, the following exactness conditions are equivalent:

$$u \in \operatorname{Im} d_h \quad \Longleftrightarrow \quad u \in \operatorname{Im} d_{-h^{-1}} \iff u \in \operatorname{Im} d_{-h^{-1}}) = \operatorname{Im} (\partial \bar{\partial}).$$

Proposition [B22]

Let $h \in \mathbb{R} \setminus \{0\}$ be an arbitrary constant. Let X be a compact complex $h \cdot \partial \overline{\partial}$ -manifold with dim_C X = n.

- Every d_h -cohomology class contains a d-closed representative.
- 2 Let $k \in \{0, \dots, 2n\}$. The following map

$$F: \quad H^k_{d_h}(X, \mathbb{C}) \longrightarrow H^k_{DR}(X, \mathbb{C})$$
$$[\alpha]_h \longmapsto \{\alpha\}$$

is well defined. Moreover, F is an isomorphism.

Aeppli cohomology is defined, for any p, q ∈ {0, 1, · · · , n}, by:

$$H^{p,q}_A(X,\mathbb{C}) = rac{\ker\partial\partial}{\left(\operatorname{Im}\,\partial + \operatorname{Im}\,ar\partial
ight)}$$

One defines the operator

 $\Delta_{\mathcal{A}} := \partial \partial^* + \bar{\partial} \bar{\partial}^* + (\partial \bar{\partial})^* (\partial \bar{\partial}) + (\partial \bar{\partial}) (\partial \bar{\partial})^* + (\partial \bar{\partial}^*) (\partial \bar{\partial}^*)^* + (\partial \bar{\partial}^*)^* (\partial \bar{\partial}^*)$

The 4th order Aeppli Laplacian is self-adjoint and elliptic. One obtains

$$C^{\infty}_{p,q}(X,\mathbb{C}) = \ker \Delta_A \oplus (\operatorname{Im} \partial + \operatorname{Im} \overline{\partial}) \oplus \operatorname{Im} (\partial \overline{\partial})^*$$

 $\ker \Delta_A = \ker \partial^* \cap \ker \overline{\partial}^* \cap \ker (\partial \overline{\partial})$
Hodge isomorphism: $H^{p,q}_A(X,\mathbb{C}) \simeq \ker \Delta_A = \mathcal{H}^{p,q}_A(X,\mathbb{C}).$

B b b b b

• h-Aeppli cohomology is defined, for any $k = 0, \dots, 2n$, as

$$H_{h,\mathcal{A}}^k(X,\mathbb{C}) = \frac{\ker d_h d_{h^{-1}}}{(\operatorname{Im} d_h + \operatorname{Im} d_{h^{-1}})}$$

where all the vector spaces involved are subspaces of the space $C_k^{\infty}(X, \mathbb{C})$ of smooth k-forms on X.

[BP18]

$$H^k_{h,A}(X,\mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}_A(X,\mathbb{C})$$

.

Proposition

For every $h \in R \setminus \{0\}$. Let X be a compact complex $h - \partial \overline{\partial}$ -manifold with dim_C X = n.

- Every d_hd_{-h⁻¹}-cohomology class contains a d_h-closed representative.
- O The following map

$$\begin{aligned} G : \quad H^k_{h,\mathcal{A}}(X,\mathbb{C}) &\longrightarrow H^k_{d_h}(X,\mathbb{C}) \\ & [\Omega]_{h,\mathcal{A}} \longmapsto [\Omega]_{d_h} \end{aligned}$$

is well defined. Furthermore G is an isomorphism.

Metrical point of view

Let Ω be a C^{∞} strictly weakly positive (p, p)-form on X. Ω is called

$$\exists \alpha^{i,2p-i} \in C^{\infty}_{i,2p-i}(X,\mathbb{C}) \text{ for } i \in \{0,\cdots,p-1\} \implies \partial \bar{\partial}\Omega = 0 \\ d(\sum_{i=0}^{p-1} \alpha^{i,2p-i} + \Omega + \sum_{i=0}^{p-1} \overline{\alpha^{i,2p-i}}) = 0 \qquad (p - \mathsf{SKT} \ [B19]) \\ (p - \mathsf{HS} \ [B19])$$

For every $h \in \mathbb{R} \setminus \{0\}$,

• ω is called *h*-strongly Gauduchon (*h*-sG) metric if there exists $\Omega^{n-2,n} \in C^{\infty}_{n-2,n}(X, \mathbb{C})$ such that

$$d_h\left(\frac{1}{h}\Omega^{n-2,n}+\omega^{n-1}+h\overline{\Omega^{n-2,n}}\right)=0.$$

• Ω is called *hp*-Hermitian symplectic (*hp*-HS) form if there exist $\Omega^{i,2p-i} \in C^{\infty}_{i,2p-i}(X,\mathbb{C})$ and $\Omega^{2p-i,i} \in C^{\infty}_{2p-i,i}(X,\mathbb{C})$ with $i = 0, \dots, p-1$ such that

$$d_h\left(\sum_{i=0}^{p-1} \Omega^{i,2p-i} + \Omega + \sum_{i=0}^{p-1} \Omega^{2p-i,i}\right) = 0.$$

X is said to be h-sG (resp. hp-HS) manifold if there exists an h-sG metric (resp. hp-HS form) on X.

$$h - sG \iff sG$$

$$\begin{array}{rcl} \forall u \in \ker \, d_h \cap \ker \, d_{-h^{-1}}; & \Longrightarrow & h - \mathrm{sG} \\ u \in & \operatorname{Im} \, d_{-h^{-1}} \Longrightarrow & u \in & \operatorname{Im} \, d_h d_{-h^{-1}} \\ & \implies & h - \mathrm{Gauduchon} \end{array}$$

X is
$$hp - \mathsf{HS} \ + p = n - 1 \Longrightarrow X$$
is either sG or balanced

On the h- $\partial \bar{\partial}$ -manifold, one has:

$$hp - HS \iff p - SKT$$
.

Let \mathcal{X} be a complex manifold and let Δ be an open ball containing the origin in \mathbb{C}^m for some $m \in \mathbb{N}^*$.

A holomorphic family of compact complex manifolds is a proper holomorphic submersion $\pi : \mathcal{X} \longrightarrow \Delta$.

By a result of Ehresmann ([Voi07], Theorem 9.3), all the fibres $X_t := \pi^{-1}(t)$, for all $t \in \Delta$, are C^{∞} -diffeomorphic to a fixed C^{∞} manifold X. Therefore, the holomorphic family $(X_t)_{t \in \Delta}$ of compact complex manifolds can be viewed as a single C^{∞} manifold X endowed with a C^{∞} family of complex structures $(J_t)_{t \in \Delta}$.

Main result

Theorem

For every $h \in \mathbb{R} \setminus \{0\}$ an arbitrary constant. Let $\pi : \mathcal{X} \mapsto \Delta$ be a holomorphic family of compact complex manifolds of dimension n and $p \in \{0, \dots, n\}$. If X_0 is a p-SKT h- $\partial\bar{\partial}$ -manifold, then X_t is a p-SKT h- $\partial\bar{\partial}$ -manifold for every $t \in \Delta$, after possibly shrinking Δ about 0.

Theorem

Let $(X_t)_{t\in\Delta}$ be a holomorphic family of compact complex manifolds. If X_0 is an hp-HS h- $\partial\bar{\partial}$ -manifold for some $h \in \mathbb{R} \setminus \{0\}$, then X_t is an hp-HS h- $\partial\bar{\partial}$ -manifold for every $t \in \Delta$ close enough to 0.

Proof Suppose that X_0 is an *hp*-HS $h - \partial \bar{\partial}$ -manifold. There exist $\Omega^{i,2p-i} \in C^{\infty}_{i,2p-i}(X,\mathbb{C})$ and $\Omega^{2p-i,i} \in C^{\infty}_{2p-i,i}(X,\mathbb{C})$ for $i = 0, \cdots, p-1$ such that

$$d_h\tilde{\Omega}=d_h\left(\sum_{i=0}^{p-1}\Omega^{i,2p-i}+\Omega+\sum_{i=0}^{p-1}\Omega^{2p-i,i}\right)=0.$$

 $ilde{\Omega}$ is a d_h -closed 2p-form on X_0 . Then,

$$d ilde{\Omega} = -dd_h u$$

where u is a (2p - 1)-form. The splitting of u into pure-type forms reads:

$$u = \sum_{i=0}^{p-1} u^{i,2p-i-1} + \sum_{i=0}^{p-1} u^{2p-i-1,i}.$$
 (1)

Applying $\partial ar{\partial}$ to the equation (1) implies that

$$\Psi: = \sum_{i=0}^{p-1} \left(\Omega^{i,2p-i} + (1-h) \,\overline{\partial} u^{i,2p-i-1} \right) \\ + \Omega + \sum_{i=0}^{p-1} \left(\Omega^{2p-i,i} - (1-h) \,\partial u^{2p-i-1,i} \right)$$

is a *d*-closed (2p)-form such that Ω is its component of type (p, p).

 $(\Omega_t)_{t \in \Delta}$: the smooth family of component of Ψ of type (p, p) for the complex structure J_t of X_t .

The forms Ω_t vary in a C^{∞} way with $t \in \Delta$ for t close to 0. Additionally, $\Omega > 0$ implies that $\Omega_t > 0$ for t close to 0 (cf. [B19]). Note by

$$\Psi_t = \sum_{i=0}^{p-1} \Omega_t^{i,2p-i} + \Omega_t + \sum_{i=0}^{p-1} \Omega_t^{2p-i,i}$$

the *d*-closed 2*p*-form on X_t with Ω_t is its component of type (p, p).

This implies that Ω_t is a $\partial_t \bar{\partial}_t$ -closed (p, p)-form on X_t . The $h - \partial \bar{\partial}$ -property is deformation-open (cf. [BP18]). Consequently, X_t is an hp-HS $h - \partial \bar{\partial}$ -manifold for any t close to 0.

Bibliography

- •[B19] H. Bellitir Deformation stability of p-SKT and p-HS manifolds European Journal of Mathematics. 6, 1-21(2019). https://doi.org/10.1007/s40879-019-00350-7.
- •[B22] H. Bellitir Co-polarised deformations of Gauduchon Calabi-Yau $\partial \bar{\partial}$ -manifolds and deformation of p-SKT
- h- $\partial\bar{\partial}$ -manifolds Annali di Matematica Pura ed Applicata, 2023, 202(1), pp. 209–233
- [BP18] H. Bellitir, D. Popovici *Positivity cones under deformations of complex structures*.Riv. Math. Univ. Parma. 9(1), 133-176 (2018).
- [Pop17] D. Popovici Adiabatic Limit and the Frölicher Spectral Sequence Pacific J. Math. (2017)
- [Voi07] C. Voisin Hodge Theory and Complex Algebraic Geometry — I. Cambridge Studies in Advanced Mathematics, 76. Cambridge University Press, Cambridge, 2007.

Thank you $\ddot{-}$

Houda BELLITIR Classification of compact complex manifolds

→ < ≣ >