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Objective

If X compact topological space, then the ring R =C(X ,R) has the
following property : Each prime ideal is contained in a unique maximal
ideal.

A commutative ring ring R is a Gelfand ring if each prime ideal is
contained in a unique maximal ideal.
Generalization in the graded setting.
Establish some topological and algebraic characterizations of these
rings, one of which is the algebraic analogue of the Urysohn’s lemma.
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Let G be a group with identity e and R be a commutative ring with
unit.

Then R is called a G -graded ring if there exist additive subgroups
Rg of R indexed by elements g ∈G such that R =⊕

g∈G Rg and
RgRg ′ ⊆Rgg ′ for all g ,g ′ ∈G , where RgRg ′ consists of the finite sums
of ring products ab with a ∈Rg and b ∈Rg ′ .The elements of Rg are
called homogeneous elements of R of degree g . The homogeneous
elements of the ring R are denoted by h(R), i.e. h(R)=∪g∈GRg .If
a ∈R, then the element a can be written uniquely as

∑
g∈G ag , where

ag ∈Rg is called the g -component of a in Rg .
Let R be a G -graded commutative ring and I be an ideal of R. Then I
is called a graded ideal of R if I =⊕

g∈G (I ∩Rg )

Définition

A G -graded ideal P of a G -graded ring R is called G -graded prime ideal
or homogeneous prime ideal of R if P ̸=R and if whenever r and s are
homogeneous elements of R such that rs ∈P, then either r ∈P or
s ∈P.The G -graded prime spectrum or homogeneous prime spectrum of
R is the set of all G -graded prime ideals of R, it is denoted by
GSpec(R).A G -graded ideal M of R is said to be G -graded maximal
ideal of R if M ̸=R and if J is a G -graded ideal of R such that
M ⊆ J ⊆R, then J =M or J =R, the set of all G -graded maximal ideals
of R is denoted by GMax(R).
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Définition

Let R be a G -graded commutative ring. We say that R is a Gelfand
graded ring if each homogeneous prime ideal of R is contained in a
unique graded maximal ideal of R.

Zariski topology on GSpecR

Let R be a G -graded commutative ring.
If I is a graded ideal of R, the variety of I is defined by
VG (I )= {P ∈GSpecR / I ⊆P}.

VG (R)=;, VG (0)=GSpecR.

VG (I )∪VG (J)=VG (I ∩J).

∩αVG (Iα)=VG (
∑
α Iα).

There exists a unique topology of GSpecR for which the closed subsets
are VG (I ) called The Zariski topology on GSpecR.

The functor GSpec

GSpec : {G −graded commutative rings} → Top, R 7→GSpecR ; f 7→ f −1
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Topological characterization

R is a Gelfand graded if and only if every irreducible closed variety
VG (P) has a unique closed point.

Recall that a subspace Y of a topological space X is called a retract of
X if there exists a continuous map ϕ :X →Y such that for all y ∈Y ,
ϕ(y)= y , and such a map ϕ is called a retraction.
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Let R be G -graded commutative ring. The following statements are
equivalent.

1 R is a Gelfand G -graded ring.
2 If F and F ′ are disjoint closed subsets of GMax(R), then there

exists r ,r ′ ∈ h(R) with rr ′ = 0, such that r ̸∈ ∪M∈FM and
r ′ ̸∈ ∪M ′∈F ′M ′.

Corollaire

Let R be G -graded commutative ring. The following statements are
equivalent.

1 R is a G -graded Gelfand ring.
2 If M ̸=M ′ ∈GMax(R), then xy = 0 for some homogeneous elements

x ,y ∈ h(R) such that x ̸∈M ′ and y ̸∈M.

Corollaire

If R is a G -graded Gelfand ring, then GMax(R) is Hausdorff.
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Recall that a topological space X is normal or T4 if, given any disjoint
closed subsets F and F ′ of X , there are open neighborhoods U of F
and V of F ′ that are also disjoint.

The next Theorem totally
characterizes Gelfand graded rings by the normality of the homogeneous
prime spectrum.

Théorème

Let R be a G -graded commutative ring. The following statements are
equivalent.

1 R is a G -graded Gelfand ring.
2 GSpec(R) is a normal space.
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For a topological space X two subsets A and B are said to be separated
by a continuous function if there exists a continuous function f :X →R

such that f (x)= 0 for all x ∈A and f (x)= 1 for all x ∈B.

The Urysohn’s
lemma is an interesting result in topology, it furnishes a characterization
of normality in terms of continuous function.It states that a topological
space is normal if and only if any two disjoint closed subsets can be
separated by a continuous function.In the next result, we give an
algebraic version of the Urysohn lemma.To do, we fix some notations
and conventions. Let R be a G -graded ring and r ∈R. If P is a
homogeneous prime ideal of R the canonical image of r in RP is
denoted r(P). Note that r(P)= 0 if and only if ra= 0 for some
a ∈ h(R)\P.Two subsets F and F ′ of GSpec(R) are said to be separated
by a regular function if there exists r ∈R such that r(P)= 0 for all P ∈F
and r(P)= 1 for all P ∈F ′.Any such element r is called a Urysohn
regular function for F and F ′.
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Théorème

Let R be a G -graded ring. The following statements are equivalent.

1 R is a Gelfand graded ring.
2 Any two disjoint closed subsets of GSpec(R) can be separated by a

regular function.

Théorème

Let R be a G -graded commutative ring. The following statements are
equivalent.

1 R is a Gelfand graded ring.
2 If a ∈Re , then there exists elements b,c ∈Re such that

(1−ba)(1−ca′)= 0

where a′ = 1−a.

Corollaire

Let R be a G -graded commutative ring. Then R is a Gelfand graded
ring if and only if Re is a Gelfand ring.
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