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Lie groups

For any Lie group G we have a canonical involution:

se : G → G, written g 7→ g−1.

1 se(e) = e.

2 se ◦ se = IdG.

2



Symmetries (sa)a∈G in a Lie group G

For any fixed point a in G, there exists a smooth involution
sa : G → G such that a is an isolated fixed point for it.
It is defined by:

G
se // G

la
��

G

la−1

OO

sa // G,

where lg(x) := gx is the left translation by the element g ∈ G.
More precisely, the map sa is given by:

sa(b) := ab−1a.
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What about the unit sphere S2?
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The unit sphere S2 ⊂ R3
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The unit sphere S2 ⊂ R3
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The unit sphere S2 ⊂ R3
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Symmetries on the Poincaré Half-Plane

Consider IH := {z = x+ iy ∈ |C/ y > 0} with the metric
ds2 := 1

y2
(dx2 + dy2). The group SL(2, IR) acts transitively

and isometrically on IH via:(
a b
c d

)
· z :=

az + b

cz + d
.

Moreover, a symmetry (an isometry of IH) at i is given by:

si(z) := −1

z
=

(
0 1
−1 0

)
· z.

Hence, under conjugaison by elements in SL(2, IR) we get
symmetries: sa : IH → IH for any a ∈ IH.
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What is a Symmetric Space?

Definition

A symmetric space is a connected smooth manifold M with a
smooth family of involutions {sx}x∈M , in the sense that

M ×M −→ M
(x, y) 7−→ sx(y),

is smooth, and which satisfies the following properties:

1 sx(x) = x, ∀x ∈ M ;

2 sx ◦ sy ◦ sx = ssx(y), ∀x, y ∈ M ;

3 For each x ∈ M , there exists a neighborhood Ux ⊆ M of
x such that x is the only fixed point of sx in Ux.
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Example: Symmetric Pairs

Definition

A symmetric pair is a triple (G,H, σ) such that:

1 G is a connected Lie group and H a closed subgroup;

2 σ : G → G is an involutive automorphism of G satisfying
the following condition

Fix◦(σ) ⊆ H ⊆ Fix(σ),

where Fix(σ) :=
{
g ∈ G | σ(g) = g

}
.

Examples:

(GL+(n,R), SO(n), σ), where σ(A) := (A−1)
T
.

(G×G,∆G, σ), where σ(a, b) := (b, a).
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From Symmetric Pairs to Symmetric Spaces

Theorem

Let (G,H, σ) be a symmetric pair, then M := G/H is a
symmetric space.

sketch. Let π : G → M, g 7→ g be the projection map.
Define:

se(b) := σ(b), sa := λa ◦ se ◦ λa−1 ,

where λa : M → M, b 7→ ab.
. . .
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Example: The sphere S2 as a homogeneous
space of a symmetric pair

Consider S2, G := Iso(S2)◦ = SO(3) and s◦ : S
2 → S2 the

geodesic symmetry given by

s◦(x, y, z) = (−x,−y, z).

Then an involutive automorphism σ : G → G is given by

σ(g) = s◦gs
−1
◦

and satisfy

H := Fix(σ)◦ = {
(
A

1

)
/ A ∈ SO(2)} ∼= SO(2). We have

the canonical isomorphism φ : G/H ∼= S2 given by
φ([g]) := ge3.
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Proposition

Let (G,H, σ) be a symmetric pair, then M := G/H is a
reductive homogeneous G-space. More precisely we have:

1. The Lie algebra of H is h := {u ∈ g / σ′(u) = u}.
2. g = h⊕m, where m := {u ∈ g / σ′(u) = −u}.
3. Ad(H)(m) ⊆ m, and [m,m] ⊆ h.

Definition

Let τ : g → g be an involutive automorphism of a Lie algebra
g.

The pair (g, τ) is called an involutive Lie algebra.

The canonical decomposition of g is g = h⊕m, where
h := ker (τ − Idg) and m := ker (τ + Idg).

The following relations hold:
[h, h] ⊆ h, [h,m] ⊆ m, [m,m] ⊆ h.
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Conversely, we have

Proposition

Any involutive automorphism τ : g → g of a Lie algebra g
gives rise to a symmetric pair (G̃, H̃, σ̃), where

G̃ is a simply connected Lie group having g as Lie algebra;

H̃ := ⟨expG̃(h)⟩, with h := ker (τ − Idg);

σ̃ ∈ Aut(G̃) such that σ̃′ = τ .
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The Canonical decomposition of g for the
previous Examples

For (GL+(n,R), SO(n), σ), we have

h = so(n), and m = Sym(n,R).

For (G×G,∆G, σ), we have

h =
{
(u, u) | u ∈ g

}
, and m =

{
(u,−u) | u ∈ g

}
.
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Automorphisms of a Symmetric Space

An automorphism of a symmetric space M is a
diffeomorphism Φ : M

≃−→ M such that:

Φ ◦ sx ◦ Φ−1 := sΦ(x), ∀x ∈ M.

We will denote by Aut(M) the group of all automorphisms of
M .
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Let (M,µ) be a symmetric space. Define the group of
displacements of M by:

G(M) := ⟨sx ◦ sy ; x, y ∈ M⟩.

If Φ ∈ Aut(M), then

Φ ◦ (sx ◦ sy) ◦ Φ−1 = sΦ(x) ◦ sΦ(y).

Hence G(M) is a normal subgroup of Aut(M).
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Let o ∈ M be a fixed point, then for each x, y ∈ M we have

sx ◦ sy = sx ◦ so ◦ so ◦ sy = (sx ◦ so) ◦ (sy ◦ so)−1.

Thus
G(M) = ⟨sx ◦ so ; x ∈ M⟩.
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From Symmetric Spaces to Symmetric Pairs

Theorem

Let (M,µ) be a symmetric space and o ∈ M . Then:

1. G(M) is a connected Lie group.

2. G(M) acts transitively on M .

3. (G(M), Ho, σo) is a symmetric pair, where Ho denotes
the isotropy group of o, and σo given by:

σo : G(M) → G(M), F 7→ so ◦ F ◦ so.

Moreover, M is isomorphic to G(M)/Ho.

4. The canonical decomposition of g(M) corresponding to
σo is g(M) = m⊕ [m,m],, where m := ker (σ′

o + Idg).

For a full proof one can see Loos, Ottmar. Symmetric spaces: General
theory. Vol. 1. WA Benjamin, 1969.
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Affine Symmetric Spaces

Definition

An affine symmetric space is a connected smooth manifold M
endowed with a connection ∇ which satisfies the following:

For each x ∈ M , there exists an affine map sx : M → M
such that:

sx (γ(t)) = γ(−t),

where γ : (−ε, ε) → M is a geodesic of ∇ with γ(0) = x.

The affine map sx : M → M is called the geodesic symmetry
about x.
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sx : M → M , sx (γ(t)) = γ(−t).

Clearly a geodesic symmetry sx is different from IdM and
admits x as an isolated fixed point.
Moreover, if γ : (−ε, ε) → M is a geodesic of ∇ with
γ(0) = x and ux = γ̇(0), then

Txsx(ux) =
d

dt |t=0

sx (γ(t))

=
d

dt |t=0

γ(−t)

= −ux.

Thus
Txsx = − IdTxM .
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Furthermore, using the following Lemma

Lemma

Let M be a connected smooth manifold, and ∇ a connection
on it. If F1, F2 : M → M are two affine maps such that:

F1(x0) = F2(x0), and Tx0F1 = Tx0F2.

Then F1 = F2.

We deduce that

sx ◦ sx = IdM , ∀x ∈ M ;

sx ◦ sy ◦ sx = ssx(y), ∀x, y ∈ M .
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Properties

Proposition

Let (M,∇) be an affine symmetric space, then we have

1. ∇ is complete.

2. Aff(M,∇) acts transitively on M , and the same is true
for its identity component Aff0(M,∇).
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Symmetric Pair associated to Affine
Symmetric Space

If (M,∇) is an affine symmetric space, then we can write

M ∼= Aff0(M,∇)/Hx0 ,

where Hx0 denotes the isotropy group of a point x0 ∈ M in
Aff0(M,∇). Let s0 be the geodesic symmetry about x0, and
define a homomorphism

σ∇ : Aff0(M,∇) → Aff0(M,∇), written F 7→ s0 ◦ F ◦ s0.

Proposition

The triple
(
Aff0(M,∇), Hx0 , σ

∇) is a symmetric pair.
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Correspondence: (M,∇) ⇆ (G,H, σ)

• The next step: Expression of the canonical connection ∇
associated to a symmetric pair (G,H, σ)? i.e. G-invariant
connection on G/H for which σ : G/H → G/H is an affine
map.

27



Reductive homogeneous G-spaces

A homogeneous G-space G/H is called reductive if there
exists a vector subspace m ⊂ g such that:

g = m⊕ h, and Ad(H)(m) ⊆ m,

where g and h are the Lie algebras of G and H respectively.

28



Nomizu Theorem

Theorem

Let M := G/H be a reductive homogeneous G-space with a
fixed reductive decomposition, i.e

g = m⊕ h, and Ad(H)(m) ⊆ m.

Then there exists a one-to-one correspondence between the
set of G-invariant connections on M and the set of bilinear
maps α : m×m → m which are Ad(H)-invariant, i.e

Adhα(u, v) = α (Adhu,Adhv),

for u, v ∈ m and h ∈ H.
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Let M := G/H be a reductive homogeneous G-space with a
fixed reductive decomposition g = m⊕ h. For each u ∈ g, we
define a vector field u∗ ∈ X(M), called the fundamental vector
field associated to u by:

u∗
a :=

d

dt |t=0

expG(tu)a, ∀ a ∈ M.

Moreover, we have a linear isomorphism between m and TeM ,
given by:

Ie : m
∼=−−→ TeM

u 7−→ u∗
e.

If ∇ is a G-invariant connection on M , then its associated
bilinear map α : m×m → m is defined as follows1:

α(u, v) := I−1
e

(
(∇u∗v∗)e

)
+ [u, v]m.

1For w ∈ g, we denote by wm the projection of w on m.
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Further, the torsion T∇ of the G-invariant connection ∇ gives
rise to a bilinear map Tα : m×m → m written as

Tα(u, v) := α(u, v)− α(v, u)− [u, v]m.

Hence

Corollary

Let ∇ be a G-invariant connection on M and α its associated
bilinear map. Then ∇ is torsion-free if and only if for any
u, v ∈ m

α(u, v) =
α(u, v) + α(v, u)

2
+

1

2
[u, v]m,

i.e. the bilinear map αsym(u, v) := α(u, v)− 1
2
[u, v]m is

symmetric.

31



Particular G-invariant connections on M

The natural connection ∇0 given by:

α0(u, v) =
1

2
[u, v]m, ∀u, v ∈ m.

It is torsion-free.

The canonical connection ∇c given by:

αc(u, v) = 0, ∀u, v ∈ m.

It is invariant under parallelism i.e the torsion and the
curvature tensors of ∇c are both parallel.

Remark. ∇c = ∇0 if and only if [m,m] ⊆ h.

32



Nomizu’s Theorem allows us to transfer geometric conditions
to algebra, or algebraic conditions to geometry.

Proposition

Let M := G/H be a reductive homogeneous G-space with a
fixed reductive decomposition g = m⊕ h and ∇ a G-invariant
connection on M with α : m×m → m its associated bilinear
map. For each u ∈ m, we have

α(u, u) = 0 ⇔ t 7→ expG(tu) is a geodesic of ∇.

Proof. Let u ∈ m and γ : R→ M, t 7→ expG(tu). Since
γ̇(t) = u∗

γ(t), then a direct computation yields

∇γ̇ γ̇(t) =
(
λexpG(tu)

)
∗ α(u, u)

∗
e.
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Notice that if ∇ is a G-invariant connection on M whose
geodesics through e are exactly the curves t 7→ expG(tu) for
any u ∈ m, then the geodesics through another point a of M
are exactly the curves t 7→ expG(tAdau)a, with u ∈ m.

Corollary

On a reductive homogeneous G-space M := G/H with a fixed
reductive decomposition g = m⊕ h, the natural connection
∇0 is the only G-invariant torsion-free connection whose
geodesics are exactly the curves t 7→ expG(tAdau)a, with
u ∈ m and a ∈ M .

Example. A connected Lie group G, viewed as a reductive
homogeneous (G×G)-space, endowed with its natural
bi-invariant connection!
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From Symmetric Pairs to Affine Symmetric
Spaces

Theorem

Let (G,H, σ) be a symmetric pair, then (G/H,∇0) is an
affine symmetric space.

Proof. Let g = m⊕ h be the canonical decomposition of g
and ∇0 the natural torsion-free G-invariant connection on M
associated to the bilinear map α0 ≡ 0. Consider the following
smooth map on M

s0 : M → M, a 7→ σ(a).

This is well defined because H ⊆ Fix(σ), and satisfies

s0 ◦ s0 = IdM .
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Proof. s0 ∈ Aff(M,∇0)

Define a connection ∇ on M by:

∇XY := s0∗

(
∇0

s0∗X
s0∗Y

)
, ∀X, Y ∈ X(M).

Let us show that ∇ = ∇0. First, for each a ∈ G, we have the
following commutative diagram

M
s0 //

λa

��

M

λσ(a)

��

M
s0 //M .

Thus ∇ is G-invariant. Let α be its associated bilinear map.
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Proof. s0 ∈ Aff(M,∇0)

For each u ∈ m and a ∈ G we have(
s0∗u

∗)
a
=

d

dt |t=0

s0
(
expG(tu)σ(a)

)
=

d

dt |t=0

expG(−tu)a

= −u∗
a.

Thus
s0∗u

∗ = −u∗, ∀u ∈ m.
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Proof. s0 ∈ Aff(M,∇0)

Hence for u, v ∈ m we have

α(u, v) = I−1
e

(
(∇u∗v∗)e

)
= I−1

e

(
s0∗

(
∇0

u∗v∗
)
e

)
= −I−1

e

(
α0(u, v)∗e

)
= 0,

which implies that ∇ = ∇0 and therefore s0 ∈ Aff(M,∇0).
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Proof. s0 is a geodesic symmetry about e

Now it only remains to check that s0 is a geodesic symmetry
about e. Let t 7→ expG(tu) be a geodesic through e with
u ∈ m, then

s0
(
expG(tu)

)
= σ (expG(tu))

= expG(−tu).

Thus s0 is a geodesic symmetry about e.
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Finally, for any a ∈ M we define the geodesic symmetry about
a as follow

M
s0 //M

λa

��

M

λa−1

OO

sa //M.

One can check easily that sa satisfies all the conditions
required for a geodesic symmetry.
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Invariant Pseudo-Riemannian Metrics on a
Reducitve Homogeneous G-space

Theorem

Let M := G/H be a reductive homogeneous G-space with a
fixed reductive decomposition g = m⊕ h. There is a natural
one-to-one correspondence between the set of G-invariant
pseudo-Riemannian metrics on M and the set of Ad(H)-
invariant non-degenerate symmetric bilinear forms on m.

For the sake of simplicity, we shall use the same notation ⟨· , ·⟩
to denote both the G-invariant pseudo-Riemannian metric on
M , and its associated Ad(H)-invariant non-degenerate
symmetric bilinear form on m.
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Proposition

Let M := G/H be a reductive homogeneous G-space with a
fixed reductive decomposition g = m⊕ h, and let ⟨· , ·⟩ be a
G-invariant pseudo-Riemannian metric on M . The Levi-Civita
connection ∇LC of ⟨· , ·⟩ is G-invariant and its associated
bilinear map αLC : m×m → m is given by:

αLC(u, v) :=
1

2
[u, v]m + αLC

sym(u, v),

where αLC
sym : m×m → m is the symmetric bilinear map

defined by:

⟨αLC
sym(u, v), w⟩ =

1

2

{
⟨[w, u]m, v⟩+ ⟨u, [w, v]m⟩

}
,

for all u, v, w ∈ m.
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Proof. A direct computation using Koszul’s formula shows
that ∇LC is G-invariant. Moreover, for u, v, w ∈ m we have

⟨αLC(u, v), w⟩ = ⟨∇LC
u∗ v∗, w∗⟩e + ⟨[u, v]∗, w∗⟩e

=
1

2

{
⟨[u, v]∗, w∗⟩e + ⟨[w, u]∗, v∗⟩e + ⟨u∗, [w, v]∗⟩e

}
=

1

2

{
⟨[u, v]m, w⟩+ ⟨[w, u]m, v⟩+ ⟨u, [w, v]m⟩

}
= ⟨1

2
[u, v]m + αLC

sym(u, v), w⟩,

where

⟨αLC
sym(u, v), w⟩ :=

1

2

{
⟨[w, u]m, v⟩+ ⟨u, [w, v]m⟩

}
.
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Corollary

With the notations of the previous proposition, The Levi-Civita
connection ∇LC of ⟨· , ·⟩ coincides with the natural connection
∇0 associated to the decomposition g = m⊕ h if and only if

⟨[u, v]m, w⟩+ ⟨v, [u,w]m⟩ = 0, ∀u, v, w ∈ m.

Corollary

Let (G,H, σ) be a symmetric pair. A G-invariant pseudo-
Riemannian metric on G/H, if there exists any, induces the
canonical connection.
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Semi-simple Lie Algebras

Definition

Let (g, [ , ]) be a Lie algebra.

g is simple if it is nonabelian and does not contain any
ideal distinct from {0} and g.

g is semi-simple if does not contain any nonzero solvable
ideal. ( a is solvable i.e. there exists n s.t. Dn(a) = {0}).

Let (g, [ , ]) be a Lie algebra. Then the following statements
are equivalent:

1. g is semi-simple.

2. g = g1 ⊕ · · · ⊕ gr, where the gi’s are ideals of g which are
simple (as Lie algebras).

3. g has no nonzero abelian ideal.

4. The Killing form Bg : g× g → R of g is non-degenerate.
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Cartan involution

Let τ : g → g be an automorphism with τ 2 = Idg. Then, the
bilinear form

Bτ (u, v) := −Bg(u, τ(v)),

is symmetric, where Bg is the Killing form of g. τ is called a
Cartan involution if Bτ is an inner product on g.

Proposition

θ(A) := −At is an involution of Mn(IR). If g ⊂ Mn(IR) is a
subalgebra such that

θ(g) ⊂ g, and Z(g) = {0},

then, τ := θ|g is a Cartan involution of g.

It is the case, for example, of the subalgebras sl(n, IR) and
so(p, q).
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Proof. We have to show that for any X ∈ g, s.t. X ̸= 0

Bτ (X,X) = tr(adX ◦ adXt) > 0 ?

Consider the canonical inner product on g:

⟨X, Y ⟩ := tr(X tY ),

this induces an inner product on End(g):

⟨⟨f1, f2⟩⟩ := tr(fT
1 ◦ f2),

where fT
1 : g → g is the transpose defined through ⟨· , ·⟩.

A small computation shows that adXt = (adX)
T .
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Theorem

Let (G,H, σ) be a symmetric pair such that G is semi-simple.
Then the canonical connection on G/H is induced by a
G-invariant pseudo-Riemannian metric. If moreover σ′ is a
Cartan involution, then the canonical connection on G/H is
induced by a G-invariant Riemannian metric.

Proof. Define an Ad(H)-invariant symmetric bilinear form on
m by:

⟨· , ·⟩ : m×m → R, written ⟨u, v⟩ := −Bg(u, v),

where Bg : g× g → R is the Killing form of g. Furthermore,
since g is semi-simple and Bg(h,m) = 0, we deduce that ⟨· , ·⟩
is non-degenerate.
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