An Introduction to the Geometry of Symmetric Spaces

Abdelhak Abouqateb

Cadi Ayyad University, Marrakesh, Morocco

at Faculty of Sciences Meknes

18th March 2023

For any Lie group ${\boldsymbol{G}}$ we have a canonical involution:

 $\mathfrak{s}_e: G \to G$, written $g \mapsto g^{-1}$.

•
$$\mathfrak{s}_e(e) = e.$$

• $\mathfrak{s}_e \circ \mathfrak{s}_e = \mathrm{Id}_G.$

Symmetries $(\mathfrak{s}_a)_{a\in G}$ in a Lie group G

For any fixed point a in G, there exists a smooth involution $\mathfrak{s}_a: G \to G$ such that a is an **isolated fixed** point for it. It is defined by:

where $l_g(x) := gx$ is the left translation by the element $g \in G$. More precisely, the map \mathfrak{s}_a is given by:

 $\mathfrak{s}_a(b) := ab^{-1}a.$

What about the unit sphere \mathbb{S}^2 ?

The unit sphere $\mathbb{S}^2 \subset \mathbb{R}^3$

The unit sphere $\mathbb{S}^2 \subset \mathbb{R}^3$

The unit sphere $\mathbb{S}^2 \subset \mathbb{R}^3$

Symmetries on the Poincaré Half-Plane

Consider $\mathbb{H} := \{z = x + iy \in \mathbb{C} / y > 0\}$ with the metric $ds^2 := \frac{1}{y^2}(dx^2 + dy^2)$. The group $\mathrm{SL}(2, \mathbb{R})$ acts transitively and isometrically on \mathbb{H} via:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z := \frac{az+b}{cz+d},$$

Moreover, a symmetry (an isometry of \mathbb{H}) at *i* is given by:

$$\mathfrak{s}_i(z) := -\frac{1}{z} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot z.$$

Hence, under conjugaison by elements in $SL(2, \mathbb{R})$ we get symmetries: $\mathfrak{s}_a : \mathbb{H} \to \mathbb{H}$ for any $a \in \mathbb{H}$.

What is a Symmetric Space?

Definition

A symmetric space is a connected smooth manifold M with a smooth family of involutions $\{\mathfrak{s}_x\}_{x\in M}$, in the sense that

$$\begin{array}{cccc} M \times M & \longrightarrow & M \\ (x,y) & \longmapsto & \mathfrak{s}_x(y), \end{array}$$

is smooth, and which satisfies the following properties:

So For each x ∈ M, there exists a neighborhood U_x ⊆ M of x such that x is the only fixed point of s_x in U_x.

Example: Symmetric Pairs

Definition

A symmetric pair is a triple (G, H, σ) such that:

- \bigcirc G is a connected Lie group and H a closed subgroup;
- **2** $\sigma: G \to G$ is an involutive automorphism of G satisfying the following condition

 $\operatorname{Fix}^{\circ}(\sigma) \subseteq H \subseteq \operatorname{Fix}(\sigma),$

where $\operatorname{Fix}(\sigma) := \{g \in G \mid \sigma(g) = g\}.$

Examples:

- $(\operatorname{GL}^+(n, \mathbb{R}), \operatorname{SO}(n), \sigma)$, where $\sigma(A) := (A^{-1})^T$.
- $(G \times G, \Delta G, \sigma)$, where $\sigma(a, b) := (b, a)$.

From Symmetric Pairs to Symmetric Spaces

Theorem

Let (G, H, σ) be a symmetric pair, then M := G/H is a symmetric space.

sketch. Let $\pi: G \to M, g \mapsto \overline{g}$ be the projection map. Define:

$$\mathfrak{s}_{\overline{e}}(\overline{b}) := \overline{\sigma(b)}, \qquad \mathfrak{s}_{\overline{a}} := \lambda_a \circ \mathfrak{s}_{\overline{e}} \circ \lambda_{a^{-1}},$$

where $\lambda_a : M \to M, \quad \overline{b} \mapsto \overline{ab}.$
...

Example: The sphere S^2 as a homogeneous space of a symmetric pair

Consider $S^2,~G:=Iso(S^2)^\circ=SO(3)$ and $s_\circ:S^2\to S^2$ the geodesic symmetry given by

$$s_{\circ}(x, y, z) = (-x, -y, z).$$

Then an involutive automorphism $\sigma: G \to G$ is given by

$$\sigma(g) = s_\circ g s_\circ^{-1}$$

and satisfy

$$\begin{split} H &:= Fix(\sigma)^\circ = \{ \begin{pmatrix} A \\ & 1 \end{pmatrix} / \ A \in SO(2) \} \cong SO(2). \text{ We have} \\ \text{the canonical isomorphism } \varphi: G/H \cong S^2 \text{ given by} \\ \varphi([g]) &:= ge_3. \end{split}$$

Proposition

Let (G, H, σ) be a symmetric pair, then M := G/H is a reductive homogeneous G-space. More precisely we have:

- 1. The Lie algebra of H is $\mathfrak{h} := \{ u \in \mathfrak{g} / \sigma'(u) = u \}.$
- 2. $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$, where $\mathfrak{m} := \{ u \in \mathfrak{g} / \sigma'(u) = -u \}$.
- 3. $\operatorname{Ad}(H)(\mathfrak{m}) \subseteq \mathfrak{m}$, and $[\mathfrak{m}, \mathfrak{m}] \subseteq \mathfrak{h}$.

Definition

Let $\tau : \mathfrak{g} \to \mathfrak{g}$ be an involutive automorphism of a Lie algebra \mathfrak{g} .

- The pair (\mathfrak{g}, τ) is called an *involutive* Lie algebra.
- The canonical decomposition of \mathfrak{g} is $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$, where $\mathfrak{h} := \ker (\tau \mathrm{Id}_{\mathfrak{g}})$ and $\mathfrak{m} := \ker (\tau + \mathrm{Id}_{\mathfrak{g}})$.

 $\begin{array}{l} \text{The following relations hold:} \\ [\mathfrak{h},\mathfrak{h}]\subseteq\mathfrak{h}, \quad [\mathfrak{h},\mathfrak{m}]\subseteq\mathfrak{m}, \quad [\mathfrak{m},\mathfrak{m}]\subseteq\mathfrak{h}. \end{array}$

Conversely, we have

Proposition

Any involutive automorphism $\tau : \mathfrak{g} \to \mathfrak{g}$ of a Lie algebra \mathfrak{g} gives rise to a symmetric pair $(\widetilde{G}, \widetilde{H}, \widetilde{\sigma})$, where

- \tilde{G} is a simply connected Lie group having \mathfrak{g} as Lie algebra;
- $H := \langle \exp_{\widetilde{G}}(\mathfrak{h}) \rangle$, with $\mathfrak{h} := \ker (\tau \mathrm{Id}_{\mathfrak{g}})$;
- $\widetilde{\sigma} \in \operatorname{Aut}(\widetilde{G})$ such that $\widetilde{\sigma}' = \tau$.

The Canonical decomposition of \mathfrak{g} for the previous Examples

• For
$$(\mathrm{GL}^+(n,\mathbb{R}),\mathrm{SO}(n),\sigma)$$
, we have

 $\mathfrak{h} = \mathfrak{so}(n), \text{ and } \mathfrak{m} = \operatorname{Sym}(n, \mathbb{R}).$

• For
$$(G \times G, \Delta G, \sigma)$$
, we have

 $\mathfrak{h} = \big\{ (u, u) \mid u \in \mathfrak{g} \big\}, \quad \text{and} \quad \mathfrak{m} = \big\{ (u, -u) \mid u \in \mathfrak{g} \big\}.$

An *automorphism* of a symmetric space M is a diffeomorphism $\Phi: M \xrightarrow{\simeq} M$ such that:

$$\Phi \circ \mathfrak{s}_x \circ \Phi^{-1} := \mathfrak{s}_{\Phi(x)}, \qquad \forall x \in M.$$

We will denote by Aut(M) the group of all automorphisms of M.

Let (M, μ) be a symmetric space. Define the group of displacements of M by:

$$G(M) := \langle \mathfrak{s}_x \circ \mathfrak{s}_y \, ; \, x, y \in M \rangle.$$

If $\Phi \in \operatorname{Aut}(M)$, then

$$\Phi \circ (\mathfrak{s}_x \circ \mathfrak{s}_y) \circ \Phi^{-1} = \mathfrak{s}_{\Phi(x)} \circ \mathfrak{s}_{\Phi(y)}.$$

Hence G(M) is a normal subgroup of Aut(M).

Let $o \in M$ be a fixed point, then for each $x,y \in M$ we have

$$\mathfrak{s}_x \circ \mathfrak{s}_y = \mathfrak{s}_x \circ \mathfrak{s}_o \circ \mathfrak{s}_o \circ \mathfrak{s}_y = (\mathfrak{s}_x \circ \mathfrak{s}_o) \circ (\mathfrak{s}_y \circ \mathfrak{s}_o)^{-1}.$$

Thus

$$G(M) = \langle \mathfrak{s}_x \circ \mathfrak{s}_o \, ; \, x \in M \rangle.$$

From Symmetric Spaces to Symmetric Pairs

Theorem

Let (M, μ) be a symmetric space and $o \in M$. Then:

- 1. G(M) is a connected Lie group.
- 2. G(M) acts transitively on M.
- 3. $(G(M), H_o, \sigma_o)$ is a symmetric pair, where H_o denotes the isotropy group of o, and σ_o given by:

 $\sigma_o: G(M) \to G(M), \quad F \mapsto \mathfrak{s}_o \circ F \circ \mathfrak{s}_o.$

Moreover, M is isomorphic to $G(M)/H_o$.

4. The canonical decomposition of $\mathfrak{g}(M)$ corresponding to σ_o is $\mathfrak{g}(M) = \mathfrak{m} \oplus [\mathfrak{m}, \mathfrak{m}]$, where $\mathfrak{m} := \ker (\sigma'_o + \mathrm{Id}_{\mathfrak{g}})$.

For a full proof one can see Loos, Ottmar. *Symmetric spaces: General theory.* Vol. 1. WA Benjamin, 1969.

Affine Symmetric Spaces

Definition

An *affine symmetric space* is a connected smooth manifold M endowed with a connection ∇ which satisfies the following:

• For each $x \in M$, there exists an affine map $\mathfrak{s}_x : M \to M$ such that:

$$\mathfrak{s}_x\left(\gamma(t)\right) = \gamma(-t),$$

where $\gamma: (-\varepsilon, \varepsilon) \to M$ is a geodesic of ∇ with $\gamma(0) = x$.

The affine map $\mathfrak{s}_x : M \to M$ is called the *geodesic symmetry* about x.

$$\mathfrak{s}_x: M o M$$
, $\mathfrak{s}_x\left(\gamma(t)
ight) = \gamma(-t)$.

Clearly a geodesic symmetry \mathfrak{s}_x is different from Id_M and admits x as an isolated fixed point. Moreover, if $\gamma : (-\varepsilon, \varepsilon) \to M$ is a geodesic of ∇ with $\gamma(0) = x$ and $u_x = \dot{\gamma}(0)$, then

$$T_x \mathfrak{s}_x(u_x) = \frac{d}{dt} |_{t=0} \mathfrak{s}_x(\gamma(t))$$
$$= \frac{d}{dt} |_{t=0} \gamma(-t)$$
$$= -u_x.$$

Thus

$$T_x \mathfrak{s}_x = -\operatorname{Id}_{T_x M}.$$

Furthermore, using the following Lemma

Lemma

Let M be a connected smooth manifold, and ∇ a connection on it. If $F_1, F_2 : M \to M$ are two affine maps such that:

$$F_1(x_0) = F_2(x_0),$$
 and $T_{x_0}F_1 = T_{x_0}F_2.$

Then $F_1 = F_2$.

We deduce that

•
$$\mathfrak{s}_x \circ \mathfrak{s}_x = \mathrm{Id}_M, \quad \forall x \in M;$$

• $\mathfrak{s}_x \circ \mathfrak{s}_y \circ \mathfrak{s}_x = \mathfrak{s}_{\mathfrak{s}_x(y)}, \quad \forall x, y \in M.$

(M,∇) An affine symmetric space

(M, ∇) — An affine symmetric space

 $(M, \{\mathfrak{s}_x\}_{x \in M})$ A symmetric space

Proposition

Let (M, ∇) be an affine symmetric space, then we have

- 1. ∇ is complete.
- 2. Aff (M, ∇) acts transitively on M, and the same is true for its identity component Aff $^{0}(M, \nabla)$.

Symmetric Pair associated to Affine Symmetric Space

If (M, ∇) is an affine symmetric space, then we can write

 $M \cong \operatorname{Aff}^0(M, \nabla) / H_{x_0},$

where H_{x_0} denotes the isotropy group of a point $x_0 \in M$ in $\operatorname{Aff}^0(M, \nabla)$. Let \mathfrak{s}^0 be the geodesic symmetry about x_0 , and define a homomorphism

 $\sigma^{\nabla} : \mathrm{Aff}^0(M, \nabla) \to \mathrm{Aff}^0(M, \nabla), \quad \text{written} \quad F \mapsto \mathfrak{s}^0 \circ F \circ \mathfrak{s}^0.$

Proposition

The triple $(\operatorname{Aff}^0(M, \nabla), H_{x_0}, \sigma^{\nabla})$ is a symmetric pair.

Correspondence: $(M, \nabla) \leftrightarrows (G, H, \sigma)$

$$(M, \nabla) \longrightarrow (Aff^{0}(M, \nabla), H_{x_{0}}, \sigma^{\nabla})$$

An affine symmetric space

• <u>The next step</u>: Expression of the canonical connection ∇ associated to a symmetric pair (G, H, σ) ? i.e. *G*-invariant connection on G/H for which $\overline{\sigma} : G/H \to G/H$ is an affine map.

A homogeneous G-space G/H is called *reductive* if there exists a vector subspace $\mathfrak{m} \subset \mathfrak{g}$ such that:

 $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{h}, \text{ and } \operatorname{Ad}(H)(\mathfrak{m}) \subseteq \mathfrak{m},$

where \mathfrak{g} and \mathfrak{h} are the Lie algebras of G and H respectively.

Nomizu Theorem

Theorem

Let M := G/H be a reductive homogeneous G-space with a fixed reductive decomposition, i.e

 $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{h}$, and $\mathrm{Ad}(H)(\mathfrak{m}) \subseteq \mathfrak{m}$.

Then there exists a one-to-one correspondence between the set of *G*-invariant connections on *M* and the set of bilinear maps $\alpha : \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$ which are $\operatorname{Ad}(H)$ -invariant, i.e

$$\mathrm{Ad}_h\alpha(u,v) = \alpha \,(\mathrm{Ad}_h u, \mathrm{Ad}_h v),$$

for $u, v \in \mathfrak{m}$ and $h \in H$.

Let M := G/H be a reductive homogeneous G-space with a fixed reductive decomposition $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{h}$. For each $u \in \mathfrak{g}$, we define a vector field $u^* \in \mathfrak{X}(M)$, called the *fundamental vector field* associated to u by:

$$u_{\overline{a}}^* := \frac{d}{dt}_{|_{t=0}} \overline{\exp_G(tu)a}, \qquad \forall \overline{a} \in M.$$

Moreover, we have a linear isomorphism between \mathfrak{m} and $T_{\overline{e}}M$, given by:

If ∇ is a *G*-invariant connection on *M*, then its associated bilinear map $\alpha : \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$ is defined as follows¹:

$$\alpha(u,v) := \mathbf{I}_{\overline{e}}^{-1} \Big(\left(\nabla_{u^*} v^* \right)_{\overline{e}} \Big) + [u,v]_{\mathfrak{m}}.$$

¹For $w \in \mathfrak{g}$, we denote by $w_{\mathfrak{m}}$ the projection of w on \mathfrak{m} .

Further, the torsion T^{∇} of the *G*-invariant connection ∇ gives rise to a bilinear map $T^{\alpha} : \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$ written as

$$T^{\alpha}(u,v) := \alpha(u,v) - \alpha(v,u) - [u,v]_{\mathfrak{m}}.$$

Hence

Corollary

Let ∇ be a *G*-invariant connection on *M* and α its associated bilinear map. Then ∇ is torsion-free if and only if for any $u, v \in \mathfrak{m}$

$$\alpha(u,v) = \frac{\alpha(u,v) + \alpha(v,u)}{2} + \frac{1}{2}[u,v]_{\mathfrak{m}},$$

i.e. the bilinear map $\alpha_{\rm sym}(u,v) := \alpha(u,v) - \frac{1}{2}[u,v]_{\mathfrak{m}}$ is symmetric.

Particular G-invariant connections on M

• The natural connection ∇^0 given by:

$$\alpha^0(u,v) = \frac{1}{2}[u,v]_{\mathfrak{m}}, \qquad \forall u,v \in \mathfrak{m}.$$

It is torsion-free.

• The canonical connection ∇^c given by:

$$\alpha^c(u,v) = 0, \qquad \forall \, u, v \in \mathfrak{m}.$$

It is invariant under parallelism i.e the torsion and the curvature tensors of ∇^c are both parallel.

Remark. $\nabla^c = \nabla^0$ if and only if $[\mathfrak{m}, \mathfrak{m}] \subseteq \mathfrak{h}$.

Nomizu's Theorem allows us to transfer geometric conditions to algebra, or algebraic conditions to geometry.

Proposition

Let M := G/H be a reductive homogeneous G-space with a fixed reductive decomposition $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{h}$ and ∇ a G-invariant connection on M with $\alpha : \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$ its associated bilinear map. For each $u \in \mathfrak{m}$, we have

 $\begin{array}{ll} \alpha(u,u)=0 & \Leftrightarrow & t\mapsto \overline{\exp_G(tu)} \ \, \text{is a geodesic of } \nabla. \end{array}$ $\begin{array}{ll} \textbf{Proof. Let } u\in\mathfrak{m} \ \text{and} \ \gamma:\mathbb{R}\to M, \ t\mapsto \overline{\exp_G(tu)}. \ \text{Since} \\ \dot{\gamma}(t)=u^*_{\gamma(t)}, \ \text{then a direct computation yields} \end{array}$

$$\nabla_{\dot{\gamma}}\dot{\gamma}(t) = \left(\lambda_{\exp_G(tu)}\right)_* \alpha(u, u)_{\overline{e}}^*. \quad \blacksquare$$

Notice that if ∇ is a *G*-invariant connection on \underline{M} whose geodesics through \overline{e} are exactly the curves $t \mapsto \overline{\exp_G(tu)}$ for any $u \in \mathfrak{m}$, then the geodesics through another point \overline{a} of Mare exactly the curves $t \mapsto \overline{\exp_G(tAd_au)a}$, with $u \in \mathfrak{m}$.

Corollary

On a reductive homogeneous G-space M := G/H with a fixed reductive decomposition $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{h}$, the natural connection ∇^0 is the only G-invariant torsion-free connection whose geodesics are exactly the curves $t \mapsto \overline{\exp_G(t \operatorname{Ad}_a u)a}$, with $u \in \mathfrak{m}$ and $\overline{a} \in M$.

Example. A connected Lie group G, viewed as a reductive homogeneous $(G \times G)$ -space, endowed with its natural bi-invariant connection!

From Symmetric Pairs to Affine Symmetric Spaces

Theorem

Let (G, H, σ) be a symmetric pair, then $(G/H, \nabla^0)$ is an affine symmetric space.

Proof. Let $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{h}$ be the canonical decomposition of \mathfrak{g} and ∇^0 the natural torsion-free *G*-invariant connection on *M* associated to the bilinear map $\alpha^0 \equiv 0$. Consider the following smooth map on *M*

$$\mathfrak{s}^0: M \to M, \qquad \overline{a} \mapsto \overline{\sigma(a)}.$$

This is well defined because $H \subseteq Fix(\sigma)$, and satisfies

$$\mathfrak{s}^0 \circ \mathfrak{s}^0 = \mathrm{Id}_M$$
.

Proof. $\mathfrak{s}^0 \in \operatorname{Aff}(M, \nabla^0)$

Define a connection ∇ on M by:

$$\nabla_X Y := \mathfrak{s}^0_* \left(\nabla^0_{\mathfrak{s}^0_* X} \mathfrak{s}^0_* Y \right), \qquad \forall X, Y \in \mathfrak{X}(M)$$

Let us show that $\nabla = \nabla^0$. First, for each $a \in G$, we have the following commutative diagram

Thus ∇ is *G*-invariant. Let α be its associated bilinear map.

For each $u \in \mathfrak{m}$ and $a \in G$ we have

$$(\mathfrak{s}^{0}_{*}u^{*})_{\overline{a}} = \frac{d}{dt}_{|_{t=0}}\mathfrak{s}^{0}\left(\overline{\exp_{G}(tu)\sigma(a)}\right)$$
$$= \frac{d}{dt}_{|_{t=0}}\overline{\exp_{G}(-tu)a}$$
$$= -u^{*}_{\overline{a}}.$$

Thus

$$\mathfrak{s}^0_* u^* = -u^*, \qquad \forall \, u \in \mathfrak{m}.$$

Hence for $u, v \in \mathfrak{m}$ we have

$$\begin{aligned} \alpha(u,v) &= \mathbf{I}_{\overline{e}}^{-1} \Big(\left(\nabla_{u^*} v^* \right)_{\overline{e}} \Big) \\ &= \mathbf{I}_{\overline{e}}^{-1} \Big(s^0_* \left(\nabla^0_{u^*} v^* \right)_{\overline{e}} \Big) \\ &= -\mathbf{I}_{\overline{e}}^{-1} \Big(\alpha^0(u,v)^*_{\overline{e}} \Big) \\ &= 0, \end{aligned}$$

which implies that $\nabla = \nabla^0$ and therefore $\mathfrak{s}^0 \in \operatorname{Aff}(M, \nabla^0)$.

Now it only remains to check that \mathfrak{s}^0 is a geodesic symmetry about \overline{e} . Let $t \mapsto \overline{\exp_G(tu)}$ be a geodesic through \overline{e} with $u \in \mathfrak{m}$, then

$$\mathfrak{s}^{0}\left(\overline{\exp_{G}(tu)}\right) = \overline{\sigma\left(\exp_{G}(tu)\right)} = \overline{\exp_{G}(-tu)}.$$

Thus \mathfrak{s}^0 is a geodesic symmetry about \overline{e} .

Finally, for any $\overline{a} \in M$ we define the geodesic symmetry about \overline{a} as follow

One can check easily that $\mathfrak{s}_{\overline{a}}$ satisfies all the conditions required for a geodesic symmetry.

Invariant Pseudo-Riemannian Metrics on a Reducitve Homogeneous *G*-space

Theorem

Let M := G/H be a reductive homogeneous G-space with a fixed reductive decomposition $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{h}$. There is a natural one-to-one correspondence between the set of G-invariant pseudo-Riemannian metrics on M and the set of $\mathrm{Ad}(H)$ -invariant non-degenerate symmetric bilinear forms on \mathfrak{m} .

For the sake of simplicity, we shall use the same notation $\langle \cdot , \cdot \rangle$ to denote both the *G*-invariant pseudo-Riemannian metric on M, and its associated $\operatorname{Ad}(H)$ -invariant non-degenerate symmetric bilinear form on \mathfrak{m} .

Proposition

Let M := G/H be a reductive homogeneous G-space with a fixed reductive decomposition $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{h}$, and let $\langle \cdot, \cdot \rangle$ be a G-invariant pseudo-Riemannian metric on M. The Levi-Civita connection ∇^{LC} of $\langle \cdot, \cdot \rangle$ is G-invariant and its associated bilinear map $\alpha^{\mathrm{LC}} : \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$ is given by:

$$\alpha^{\mathrm{LC}}(u,v) := \frac{1}{2}[u,v]_{\mathfrak{m}} + \alpha^{\mathrm{LC}}_{\mathrm{sym}}(u,v),$$

where $\alpha_{sym}^{LC}: \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$ is the symmetric bilinear map defined by:

$$\langle \alpha_{\rm sym}^{\rm LC}(u,v), w \rangle = \frac{1}{2} \Big\{ \langle [w,u]_{\mathfrak{m}}, v \rangle + \langle u, [w,v]_{\mathfrak{m}} \rangle \Big\},\$$

for all $u, v, w \in \mathfrak{m}$.

Proof. A direct computation using Koszul's formula shows that ∇^{LC} is *G*-invariant. Moreover, for $u, v, w \in \mathfrak{m}$ we have

$$\begin{split} \langle \alpha^{\mathrm{LC}}(u,v), w \rangle &= \langle \nabla^{\mathrm{LC}}_{u^*} v^*, w^* \rangle_{\overline{e}} + \langle [u,v]^*, w^* \rangle_{\overline{e}} \\ &= \frac{1}{2} \Big\{ \langle [u,v]^*, w^* \rangle_{\overline{e}} + \langle [w,u]^*, v^* \rangle_{\overline{e}} + \langle u^*, [w,v]^* \rangle_{\overline{e}} \Big\} \\ &= \frac{1}{2} \Big\{ \langle [u,v]_{\mathfrak{m}}, w \rangle + \langle [w,u]_{\mathfrak{m}}, v \rangle + \langle u, [w,v]_{\mathfrak{m}} \rangle \Big\} \\ &= \langle \frac{1}{2} [u,v]_{\mathfrak{m}} + \alpha^{\mathrm{LC}}_{\mathrm{sym}}(u,v), w \rangle, \end{split}$$

where

$$\langle \alpha_{\rm sym}^{\rm LC}(u,v),w\rangle := \frac{1}{2} \Big\{ \langle [w,u]_{\mathfrak{m}},v\rangle + \langle u,[w,v]_{\mathfrak{m}}\rangle \Big\}. \quad \blacksquare$$

Corollary

With the notations of the previous proposition, The Levi-Civita connection ∇^{LC} of $\langle \cdot, \cdot \rangle$ coincides with the natural connection ∇^0 associated to the decomposition $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{h}$ if and only if

 $\langle [u, v]_{\mathfrak{m}}, w \rangle + \langle v, [u, w]_{\mathfrak{m}} \rangle = 0, \qquad \forall u, v, w \in \mathfrak{m}.$

Corollary

Let (G, H, σ) be a symmetric pair. A *G*-invariant pseudo-Riemannian metric on G/H, if there exists any, induces the canonical connection.

Semi-simple Lie Algebras

Definition

Let $(\mathfrak{g}, [,])$ be a Lie algebra.

- g is *simple* if it is nonabelian and does not contain any ideal distinct from $\{0\}$ and g.
- g is semi-simple if does not contain any nonzero solvable ideal. (a is solvable i.e. there exists n s.t. Dⁿ(a) = {0}).

Let $(\mathfrak{g},[\,,])$ be a Lie algebra. Then the following statements are equivalent:

- 1. \mathfrak{g} is semi-simple.
- 2. $\mathfrak{g} = \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_r$, where the \mathfrak{g}_i 's are ideals of \mathfrak{g} which are simple (as Lie algebras).
- 3. \mathfrak{g} has no nonzero abelian ideal.
- 4. The Killing form $B_{\mathfrak{g}} : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ of \mathfrak{g} is non-degenerate.

Cartan involution

Let $\tau : \mathfrak{g} \to \mathfrak{g}$ be an automorphism with $\tau^2 = \mathrm{Id}_{\mathfrak{g}}$. Then, the bilinear form

 $B^\tau(u,v):=-B_\mathfrak{g}(u,\tau(v)),$

is symmetric, where $B_{\mathfrak{g}}$ is the Killing form of \mathfrak{g} . τ is called a *Cartan involution* if B^{τ} is an inner product on \mathfrak{g} .

Proposition

 $\theta(A) := -A^t$ is an involution of $M_n(\mathbb{R})$. If $\mathfrak{g} \subset M_n(\mathbb{R})$ is a subalgebra such that

$$\theta(\mathfrak{g}) \subset \mathfrak{g}, \quad \text{and} \quad Z(\mathfrak{g}) = \{0\},$$

then, $\tau := \theta_{|_{\mathfrak{g}}}$ is a Cartan involution of \mathfrak{g} .

It is the case, for example, of the subalgebras $\mathfrak{sl}(n,{\rm I\!R})$ and $\mathfrak{so}(p,q).$

Proof. We have to show that for any $X \in \mathfrak{g}$, s.t. $X \neq 0$

$$B^{\tau}(X,X) = \operatorname{tr}(\operatorname{ad}_X \circ \operatorname{ad}_{X^t}) > 0 \quad ?$$

Consider the canonical inner product on \mathfrak{g} :

$$\langle X, Y \rangle := \operatorname{tr}(X^t Y),$$

this induces an inner product on $End(\mathfrak{g})$:

$$\langle\langle f_1, f_2\rangle\rangle := \operatorname{tr}(f_1^T \circ f_2),$$

where $f_1^T : \mathfrak{g} \to \mathfrak{g}$ is the transpose defined through $\langle \cdot, \cdot \rangle$. A small computation shows that $\mathrm{ad}_{X^t} = (\mathrm{ad}_X)^T$.

Theorem

Let (G, H, σ) be a symmetric pair such that G is semi-simple. Then the canonical connection on G/H is induced by a G-invariant pseudo-Riemannian metric. If moreover σ' is a Cartan involution, then the canonical connection on G/H is induced by a G-invariant Riemannian metric.

Proof. Define an Ad(H)-invariant symmetric bilinear form on \mathfrak{m} by:

$$\langle \cdot , \cdot \rangle : \mathfrak{m} \times \mathfrak{m} \to \mathbb{R}, \quad \text{written} \quad \langle u, v \rangle := -B_{\mathfrak{g}}(u, v),$$

where $B_{\mathfrak{g}} : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ is the Killing form of \mathfrak{g} . Furthermore, since \mathfrak{g} is semi-simple and $B_{\mathfrak{g}}(\mathfrak{h}, \mathfrak{m}) = 0$, we deduce that $\langle \cdot, \cdot \rangle$ is non-degenerate.

References

- Michel Cahen, and Monique Parker. *Pseudo-Riemannian symmetric spaces*. Vol. 229. American Mathematical Soc, 1980.
- Alberto Elduque. Reductive homogeneous spaces and nonassociative algebras. Communications in Mathematics 28 (2020): 199.229.
- Sigurdur Helgason. *Differential geometry, Lie groups, and symmetric spaces*. Academic press, 1979.
- Shoshichi Kobayashi, and Katsumi Nomizu. *Foundations of Differential Geometry*. Vol. II. Wiley, New York 1969.
- Ottmar Loos. Symmetric spaces: General theory. Vol. 1 & Vol. 2 WA Benjamin, 1969.

References

- Katsumi Nomizu. Invariant affine connections on homogeneous spaces. American Journal of Mathematics 76.1 (1954): 33-65.
- Walter A Poor. *Differential geometric structures*. Courier Corporation, 2007.
- Mikhail Mikhaïlovich Postnikov. Geometry VI: Riemannian Geometry. Vol. 91. Springer Science & Business Media, 2013.
- Veeraualli Seshadri Varadarajan. Lie groups, Lie algebras, and their representations. Vol. 102. Springer Science & Business Media, 2013.