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Lie groups

For any Lie group GG we have a canonical involution:

s.: G — G, written g~ g .

Q s.(e) =e.
Q s.o0s. =1Idg.



Symmetries (5,).cc in a Lie group G

For any fixed point a in (5, there exists a smooth involution
5, : G — (G such that a is an isolated fixed point for it.
It is defined by:

Se G
—

G
la1T la

G——,

where [,(z) := gz is the left translation by the element g € G.
More precisely, the map s, is given by:

5,(b) := ab'a.



What about the unit sphere S*?
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Symmetries on the Poincaré Half-Plane

Consider H := {z =2+ iy € C/ y > 0} with the metric
ds? = y%(dxz + dy?). The group SL(2,IR) acts transitively
and isometrically on H via:

a b az+b
czi= :
c d cz+d
Moreover, a symmetry (an isometry of IH) at i is given by:

5i(2) =~ = (_01 é) -

Hence, under conjugaison by elements in SL(2,1R) we get
symmetries: s, : I[H — H for any a € H.




What is a Symmetric Space?

Definition
A symmetric space is a connected smooth manifold M with a
smooth family of involutions {s,}.cas, in the sense that

MxM — M
(x,y) +— s.(y),

is smooth, and which satisfies the following properties:
Q s.(x)=2, VzeM,
Q 5,086,058, =55y, VIT,yEM,
©Q For each x € M, there exists a neighborhood U, C M of
x such that x is the only fixed point of s, in U,.



Example: Symmetric Pairs

Definition
A symmetric pair is a triple (G, H, o) such that:
©Q G is a connected Lie group and H a closed subgroup;

Q o : G — G is an involutive automorphism of G satisfying
the following condition

Fix°(c) C H C Fix(0),
where Fix(o) := {g € G| o(g) = g}.

Examples:
o (GL*(n,R),S0(n), o), where o(A) := (A™1)".
o (G x G,AG,0), where o(a,b) := (b,a).
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From Symmetric Pairs to Symmetric Spaces

Theorem

Let (G, H,o0) be a symmetric pair, then M := G/H is a
symmetric space.

sketch. Let 7 : G — M, g — g be the projection map.
Define:

s¢(b) == o(b), S5 := Aqg 0550 A1,

where \, : M — M, b+ ab.
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Example: The sphere S? as a homogeneous
space of a symmetric pair
Consider S?, G := Iso(S?)° = SO(3) and s, : S? — S? the
geodesic symmetry given by
So(T,y,2) = (—x, —y, 2).
Then an involutive automorphism o : G — G is given by

o(g) = Sogs, "

and satisfy
H = Fiz(o)° = {(A 1) / A€ SO2)} = SO(2). We have
the canonical isomorphism ¢ : G/H = S? given by
v(lg]) := ges.
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Proposition

Let (G, H,o) be a symmetric pair, then M := G/H is a

reductive homogeneous GG-space. More precisely we have:
1. The Lie algebra of H ish :={u € g/ o'(u) = u}.
2.g=bhdm, wherem:={ucg/o'(u) =—u}.
3. Ad(H)(m) Cm, and [m,m]Cb.

Definition
Let 7 : g — g be an involutive automorphism of a Lie algebra
g.
@ The pair (g, 7) is called an involutive Lie algebra.
@ The canonical decomposition of g is g = & m, where
b := ker (1 — Idy) and m := ker (7 + Id,).

The following relations hold:
[hah] - b7 [ham] C m, [m,m] - b

13



Conversely, we have

Proposition
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The Canonical decomposition of g for the
previous Examples

@ For (GL™(n,R),SO(n), o), we have
h=so(n), and m = Sym(n,R).
@ For (G x G, AG, o), we have

b= {(u,u)|uecg}, and m={(u,—u)|uceg}.
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Automorphisms of a Symmetric Space

An automorphism of a symmetric space M is a
diffeomorphism ® : M — M such that:

dos,od ! = 5¢(x), Ve M.

We will denote by Aut(M) the group of all automorphisms of
M.
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Let (M, ) be a symmetric space. Define the group of
displacements of M by:

G(M) = (s, 08,; x,y € M).
If & € Aut(M), then
®o(s;08,) 07" = Sp@) 0 Sa().

Hence G(M) is a normal subgroup of Aut(M).
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Let 0 € M be a fixed point, then for each =,y € M we have

§,085,=5,05,085,08, = (5,05,)0(5,085,) .

Thus
GM)=(s,05,; x € M).
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From Symmetric Spaces to Symmetric Pairs

Theorem
Let (M 1) be a symmetric space and o € M. Then:

)
G(M) is a connected Lie group.
G(M) acts transitively on M.
3. (G(M), H,,0,) is a symmetric pair, where H, denotes
the isotropy group of o, and o, given by:

o,: G(M) — G(M), F s s,0F os,.

Moreover, M is isomorphic to G(M)/H,.
4. The canonical decomposition of g(M) corresponding to
0, is g(M) = m @ [m, m|,, where m := ker (o], + Id,).
For a full proof one can see Loos, Ottmar. Symmetric spaces: General
theory. Vol. 1. WA Benjamin, 1969.
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Affine Symmetric Spaces

Definition
An affine symmetric space is a connected smooth manifold M
endowed with a connection V which satisfies the following:

@ For each x € M, there exists an affine map s, : M — M

such that:
where v : (—¢,e) — M is a geodesic of V with v(0) = z.

The affine map s, : M — M is called the geodesic symmetry
about z.

20



Sy M — M, s, (y(t)) = ~v(—1).

Clearly a geodesic symmetry s, is different from Id;; and
admits x as an isolated fixed point.

Moreover, if v : (—e,e) — M is a geodesic of V with
7(0) = z and u, = 4(0), then

d

Tac z\Ux) — T t
alue) = 55 5 0(0)
d
== (=t
dt\t=07( )
= —U,.
Thus
,TISm = — IdTTM

il



Furthermore, using the following Lemma

Lemma

We deduce that
@ 5,05, =Idy, Vze M,
@ 5,056,086, =55y, VI,y€e€M.
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(M, V)

An affine symmetric space
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(M/ V) - (Mr {Sx}xeM)

An affine symmetric space A symmetric space
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Symmetric Pair associated to Affine
Symmetric Space

If (M, V) is an affine symmetric space, then we can write

M = Aff'(M,V)/H,,,
where H,  denotes the isotropy group of a point o € M in
Aff°(M, V). Let s° be the geodesic symmetry about z, and
define a homomorphism
oV AffO(M, V) — Aff(M, V), written F 5’0 Fos’.
Proposition

The triple (Aff’(M, V), Hy,, 0V is a symmetric pair.
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Correspondence: (M,V) < (G, H, o)

MV) (Aff°(M, V), Hy,, 0V)

An affine symmetric space A symmetric pair

e The next step: Expression of the canonical connection V
associated to a symmetric pair (G, H,0)? i.e. G-invariant
connection on G/H for which @ : G/H — G/H is an affine
map.
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Reductive homogeneous G-spaces

A homogeneous G-space G/ H is called reductive if there
exists a vector subspace m C g such that:

g=mdh, and Ad(H)(m)Cm,

where g and b are the Lie algebras of G and H respectively.
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Nomizu Theorem

Theorem

Let M := G/H be a reductive homogeneous G-space with a
fixed reductive decomposition, i.e

g=mdbh, and Ad(H)(m)C m.

Then there exists a one-to-one correspondence between the
set of G-invariant connections on M and the set of bilinear
maps « : m X m — m which are Ad(H)-invariant, i.e

Adpa(u,v) = a (Adyu, Adyw),

foru,v € m and h € H.
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Let M := G/H be a reductive homogeneous G-space with a
fixed reductive decomposition g =m @ h. For each u € g, we
define a vector field u* € X(M), called the fundamental vector
field associated to wu by:

d -
ur = —  expg(tu)a, Vaec M.

dt|,—o
Moreover, we have a linear isomorphism between m and T:M,
given by:

Ig m —:—) TgM
U UL

If V is a G-invariant connection on M, then its associated
bilinear map o : m x m — m is defined as follows®:

au,v) =11 ( (Vuw*)€> + [, V] -

1For w € g, we denote by wy, the projection of w on m.

20



Further, the torsion TV of the G-invariant connection V gives
rise to a bilinear map 7 : m X m — m written as

T (u,v) == a(u,v) — a(v,u) — [, V]y.

Hence

Corollary

21



Particular GG-invariant connections on M

@ The natural connection V° given by:

1
a®(u,v) = §[u,v]m, Yu,v €m.

It is torsion-free.

@ The canonical connection V¢ given by:
af(u,v) =0, Yu,v €m.

It is invariant under parallelism i.e the torsion and the
curvature tensors of V¢ are both parallel.

Remark. V¢ = V" if and only if [m,m] C b.

kYl



Nomizu's Theorem allows us to transfer geometric conditions
to algebra, or algebraic conditions to geometry.

Proposition

Let M := G/H be a reductive homogeneous G-space with a
fixed reductive decomposition g = m @ b and V a G-invariant
connection on M with o : m X m — m its associated bilinear
map. For each u € m, we have

a(u,u) =0 & t — expg(tu) is a geodesic of V.

Proof. Let u €¢ mand v : R — M, t — expq(tu). Since
A(t) = u’ ;) then a direct computation yields

Vi (t) = Aexpgtn)), a(u,u)s. =

23



Notice that if V is a G-invariant connection on M whose
geodesics through € are exactly the curves ¢ — exp(tu) for
any u € m, then the geodesics through another point @ of M
are exactly the curves t — expg(tAd,u)a, with u € m.

Corollary

On a reductive homogeneous G-space M := G /H with a fixed
reductive decomposition g = m & b, the natural connection
VY is the only G-invariant torsion-free connection whose
geodesics are exactly the curves t — expq(tAd,u)a, with
uemanda e M.

Example.
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From Symmetric Pairs to Affine Symmetric
Spaces

Theorem
Let (G, H,c) be a symmetric pair, then (G/H,V°) is an
affine symmetric space.

Proof. Let g = m & b be the canonical decomposition of g
and VY the natural torsion-free G-invariant connection on M
associated to the bilinear map o® = 0. Consider the following
smooth map on M

s:M— M, aw oa).
This is well defined because H C Fix(c), and satisfies

50 050 = Id]\/[ .

5



Proof. s’ € Aff(M, V")

Define a connection V on M by:
ViV =g (V,Oxg ) VX,V € X(M).

Let us show that V = V. First, for each a € G, we have the
following commutative diagram

M— M

)\al J{Aa(a)
0

M———M .

Thus V is G-invariant. Let « be its associated bilinear map.
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Proof. s’ € Aff(M, V")

For each © € m and a € G we have

A I C o)

d ——
= %hzoexpG(—tu)a

Thus
sty = —u*, Yuem.

7



Proof. s’ € Aff(M, V")

Hence for u,v € m we have

a(u,v) = IZ ( Vo v") >
)

which implies that V = V and therefore s° € Aff (M, V?).

28



Proof. s is a geodesic symmetry about ¢

Now it only remains to check that s° is a geodesic symmetry
about €. Let t — exp(tu) be a geodesic through € with
u € m, then

5" (eXpG(tu)> = o (expqs(tu))
= expq(—tu).

Thus s° is a geodesic symmetry about e.

20



Finally, for any @ € M we define the geodesic symmetry about
a as follow
M—= M

e

M—" M.

One can check easily that s; satisfies all the conditions
required for a geodesic symmetry. m

40



(G, H,0) — (G/H,V°)

A symmetric pair An affine symmetric space
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Invariant Pseudo-Riemannian Metrics on a
Reducitve Homogeneous (GG-space

Theorem

Let M := G/H be a reductive homogeneous G-space with a
fixed reductive decomposition g = m & h. There is a natural
one-to-one correspondence between the set of GG-invariant
pseudo-Riemannian metrics on M and the set of Ad(H)-
invariant non-degenerate symmetric bilinear forms on m.

For the sake of simplicity, we shall use the same notation (-, -)
to denote both the G-invariant pseudo-Riemannian metric on
M, and its associated Ad(H )-invariant non-degenerate
symmetric bilinear form on m.
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Proposition

Let M := G/H be a reductive homogeneous G-space with a
fixed reductive decomposition g = m @ b, and let (- ,-) be a
G-invariant pseudo-Riemannian metric on M. The Levi-Civita
connection VYC of (- -} is G-invariant and its associated
bilinear map o*© : m x m — m is given by:

1
0¥ (u,v) = Sl vl + 0L (1,0),
where aSLy(fn :m X m — m s the symmetric bilinear map
defined by:

(a8, 0),10) = 5 { G, i) + G [, 1)

for all u,v,w € m.
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Proof. A direct computation using Koszul’s formula shows
that V€ is G-invariant. Moreover, for u, v, w € m we have

(™ (u,v),w) = (VECo* we + ([u, v]*, w*)e

= S{ (ol w0+ (e o)+ G 0]
= {40 vl )+ (0wl ) + o, o, 0])
= (5t + 0L, (0,0),w),

2

where

(kS ), ) = o { G ) + (o ) ) m
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Corollary

With the notations of the previous proposition, The Levi-Civita
connection V'C of (- ,-) coincides with the natural connection
VY associated to the decomposition g = m @ b if and only if

([u, V]m, w) + (v, [u, w]n) =0, YVu,v,w € m.

Corollary

Let (G, H, o) be a symmetric pair. A G-invariant pseudo-
Riemannian metric on G/H, if there exists any, induces the
canonical connection.
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Semi-simple Lie Algebras

Definition
Let (g,[,]) be a Lie algebra.
@ g is simple if it is nonabelian and does not contain any
ideal distinct from {0} and g.

@ g is semi-simple if does not contain any nonzero solvable
ideal. ( a is solvable i.e. there exists n s.t. D™(a) = {0}).

Let (g,[,]) be a Lie algebra. Then the following statements
are equivalent:
1. g is semi-simple.
2. 9=¢1D - Dg,, where the g;'s are ideals of g which are
simple (as Lie algebras).
3. g has no nonzero abelian ideal.

. The Killing form By : g x g — R of g is non-degenerate.
46



Cartan involution

Let 7 : g — g be an automorphism with 72 = Id,. Then, the
bilinear form
BT(“? U) = _Bg(u7 T(U>)

is symmetric, where By is the Killing form of g. 7 is called a
Cartan involution if B” is an inner product on g.

)

Proposition

6(A) := —A" is an involution of M,(IR). Ifg C M,(IR) is a
subalgebra such that

0(g) Cg, and Z(g) = {0},

then, T := 9|g is a Cartan involution of g.

It is the case, for example, of the subalgebras sl(n, R) and

so(p, q).
47



Proof. We have to show that for any X € g, s.t. X #0
BT(X,X)=tr(ady oadxt) >0 7
Consider the canonical inner product on g:
(X)Y) = tr(X'Y),
this induces an inner product on End(g):

((fi, f2)) = tr(f) 0 fo),

where fI': g — g is the transpose defined through (-, ).
A small computation shows that adx: = (adx)”. =
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Theorem

Let (G, H,o) be a symmetric pair such that G is semi-simple.
Then the canonical connection on G /H is induced by a
G-invariant pseudo-Riemannian metric. If moreover o’ is a
Cartan involution, then the canonical connection on G/H is
induced by a G-invariant Riemannian metric.

Proof. Define an Ad(H )-invariant symmetric bilinear form on
m by:

(-,):mxm— R, written (u,v):=—DBy(u,v),
where By : g x g — R is the Killing form of g. Furthermore,

since g is semi-simple and By(h, m) = 0, we deduce that (-, )
is non-degenerate.
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