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Configuration space of the system

Space X of all the possible positions of the system

§ Previous examples:

X=full square, X=full square with a hole.

§ System=robotic arm with fixed origin

b

b

in the plane R2: X “circle X “ S1

in the space R3: X “sphere X “ S2





§ System=articulated arm with two axis and fixed origin
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§ System=articulated arm with two axis and fixed origin

b

b b

X “ product of 2 circles X “ S1 ˆ S1

§ System= bar revolving about its center (in R3)

b

b

b

X “ RP2 “ projective plane “ tlines of R3 through ~0u



Motion planner

Let X be a nice topological space, say a manifold, a CW-complex.

s : X ˆ X Ñ X r0,1s “ tγ : r0, 1s Ñ X continuousu

pA,Bq ÞÑ γ such that γp0q “ A, γp1q “ B

In other words, it is a section s : X ˆ X Ñ X r0,1s of the

evaluation map ev0,1 : X
r0,1s Ñ X ˆ X ev0,1 ˝ s “ id

γ ÞÑ pγp0q, γp1qq
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Let X be a nice topological space, say a manifold, a CW-complex.

s : X ˆ X Ñ X r0,1s “ tγ : r0, 1s Ñ X continuousu

pA,Bq ÞÑ γ such that γp0q “ A, γp1q “ B

In other words, it is a section s : X ˆ X Ñ X r0,1s of the

evaluation map ev0,1 : X
r0,1s Ñ X ˆ X ev0,1 ˝ s “ id

γ ÞÑ pγp0q, γp1qq

Such a section always exists when X is path-connected but is not
continuous in general.



X “ S1 “ tpx , yq P R2 : x2 ` y 2 “ 1u

b
A “ px , yq

v “ p´y , xq

b
B

b
´A

spA,Bq “

"
shortest path if B ‰ ´A

counterclockwise meridian if B “ ´A



X “ S2 “ tpx , y , zq P R3 : x2 ` y 2 ` z2 “ 1u

bN

b

S

V px , y , zq “ p´y , x , 0q

spA,Bq “

$
&
%

shortest path if B ‰ ´A

meridian given by V pAq if B “ ´A and A R tN,Su
a preferred meridian if pA,Bq “ pN,Sq or pS ,Nq
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TC- Topological Complexity

TC= minimal number of continuous local sections ´1

Definition. (Farber, 2003) Suppose X is path-connected. TCpX q
is the least n such that

X ˆ X “ F0 Y ... Y Fn

§ para i ‰ j , Fi X Fj “ H,

§ Fi Ă X ˆ X is nice (ENR - Euclidian Neighborhood Retract),

§ on each Fi there exists a continuous local section of
ev0,1 : X

r0,1s Ñ X ˆ X



Equivalently: TCpX q is the least n such that

X ˆ X “ U0 Y ... Y Un

where each Ui is an open set with a local continuous section of
ev0,1.

§ TC is a homotopy invariant:

If X » Y then TCpX q “ TCpY q.

§ TCpX q “ 0 if and only if X is contractible (X » ˚).

.
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TC of the spheres

As seen before: TCpS1q ď 1 and TCpS2q ď 2.

Theorem. (Farber, 2003) For n ě 1

TCpS2n´1q “ 1 TCpS2nq “ 2.

Theorem. (Grant, Lupton, Oprea)

TCpX q “ 1 iff X is homotopically equivalent to S2n´1.



Lusternik-Schnirelmann category

Definition. The Lusternik-Schnirelmann category of X , catX , is
the least integer n such that X can be covered by n ` 1 open sets,
each of which is contractible in X ,

X “ A0 Y ... Y An A0, ...,An contractible in X .
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Lusternik-Schnirelmann category

Definition. The Lusternik-Schnirelmann category of X , catX , is
the least integer n such that X can be covered by n ` 1 open sets,
each of which is contractible in X ,

X “ A0 Y ... Y An A0, ...,An contractible in X .

b

b

§ cat is a homotopy invariant

§ catpX q “ 0 iff X » ˚ and catpSnq “ 1 for any n ě 1

§ catpX q ď dimpX q
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Theorem. (Farber + classical results)

catpX q ď TCpX q ď catpX ˆ X q ď 2catpX q ď 2 dimpX q.

We say that TCpX q is maximal when

TCpX q “ 2 dimpX q.

This only can happen when π1pX q ‰ 0 because

π1pX q “ 0 ñ catpX q ď
dimX

2
and TCpX q ď dimpX q.



Surfaces (compact, connected, without boundary)

Orientable surfaces
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Surfaces (compact, connected, without boundary)

Orientable surfaces

S2 T “ S1 ˆ S1 torus with g holes Tg “ T#T# ¨ ¨ ¨#Tloooooooomoooooooon
g

.

Theorem. (Farber, 2003)

§ TCpS2q “ 2

§ TCpT q “ 2

§ for g ě 2, TCpTg q “ 4.
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Nonorientable surfaces: RP2, Klein bottle K , ...

K “ RP2#RP2, Ng “ RP2# ¨ ¨ ¨#RP2loooooooomoooooooon
g

Theorem.(Farber, Tabachnikov, Yuzvinsky, 2003) TCpRP2q “ 3

Theorem.(Dranishnikov, 2016) For g ě 4, TCpNg q “ 4.

Theorem.(Cohen, V, 2017) TCpK q “ 4. For g ě 2, TCpNg q “ 4.
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Connected sums of RPn

In analogy to Ng “ RP2# ¨ ¨ ¨#RP2 (g copies), we consider

P
n
g :“ RPn# ¨ ¨ ¨#RPnloooooooomoooooooon

g copies

Theorem. (Cohen-V., 2018) For n ě 2 and g ě 2, TCpPn
g q “ 2n.

Case g “ 1,Pn
1

“ RPn (Farber, Tabachnikov, Yuzvinsky - 2003)

Theorem. (FTY) For n “ 1, 3 or 7, TCpRPnq “ n.

For n ‰ 1, 3, 7, TCpRPnq is the least integer k such that there
exists an immersion of RPn in Rk .

In particular, TCpRPnq ď 2n ´ 1.
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Theorem. (Farber, Costa, 2010) Let M be a manifold with
fundamental group π1pMq “ Z2. Then TCpMq ď 2 dimpMq ´ 1.

Theorem. (Cohen-V., 2021) Let M be a nonorientable manifold
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Theorem. (Cohen-V., 2021) Let M be an n-dimensional
orientable manifold with abelian fundamental group π1pMq of one
of the following forms:

1. Zr with either n odd or n even such that r ă 2n

2. Zr ˆ Zpa with p prime and r ă n

3. Zr ˆ Zpa ˆ Zpb and r ď 1

4. Zpa ˆ Zpb ˆ Zpc

5. Zr ˆ pZ2qs with either n odd or n even such that r ă 2n

Then TCpMq ď 2 dimpMq ´ 1.
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Cohomological lower bounds

§ Cup-length of H˚pX ;kq

clkpX q “ maxtn | a1 ¨ ¨ ¨ an ‰ 0, ai P Hą0pX ;kqu

clkpX q ď catpX q ď dimpX q

Ex: clkpS1 ˆ S1q “ catpS1 ˆ S1q “ 2.

§ (Farber) Zero divisor cup-length of H˚pX ;kq

zero divisor: element of the ker of H˚pX qbH˚pX q Ñ H˚pX q

zclkpX q “ maxtn | z1 ¨ ¨ ¨ zn ‰ 0, zi zero divisoru

Theorem. (Farber) zclkpX q ď TCpX q
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Cohomological lower bounds

catpX q
zclkpX q

*
ď TCpX q ď 2catpX q ď 2 dimpX q

Example (Farber, 2003) TCpSnq “ 2 if n is even.

§ catpSnq “ 1 ùñ 1 ď TCpSnq ď 2.

§ zero divisors: Qpx b 1 ´ 1 b xq ‘ Q ¨ x b x x P HnpSn;Qq

§ px b 1 ´ 1 b xq2 “ ´x b x ´ p´1qnx b x ‰ 0 if n is even.

§ Therefore zclQpSnq “ 2 when n is even.



The calculation of zclk (together with good upper bounds) has
been sufficient for determining the value of TC in many cases
including the orientable surfaces, RP2,...

For Ng , g ě 2, the best we can say with this approach (taking
k “ Z2) is

3 ď TCpNg q ď 4



For proving TCpNgq “ 4, g ě 2

‚ We have used a notion of zero-divisor with twisted
coefficients, in particular the Costa-Farber class:

v P H1pX ˆ X ; I pG qq

where G “ π1pX q, I pG q “ t
ř

nigi |
ř

ni “ 0u Ă ZrG s given
with an action of G ˆ G .
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v P H1pX ˆ X ; I pG qq
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ř

nigi |
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ni “ 0u Ă ZrG s given
with an action of G ˆ G .

‚ Using the bar resolution associated to a group (and many
calculations) we proved that v4 ‰ 0 when X “ Ng with g ě 2.

Theorem (Costa-Farber, 2010) Suppose that dimpX q “ n ě 2.

§ TCpX q “ 2n ðñ v
2n ‰ 0.



For proving TCpNgq “ 4, g ě 2

‚ We have used a notion of zero-divisor with twisted
coefficients, in particular the Costa-Farber class:

v P H1pX ˆ X ; I pG qq

where G “ π1pX q, I pG q “ t
ř

nigi |
ř

ni “ 0u Ă ZrG s given
with an action of G ˆ G .

‚ Using the bar resolution associated to a group (and many
calculations) we proved that v4 ‰ 0 when X “ Ng with g ě 2.

Theorem (Costa-Farber, 2010) Suppose that dimpX q “ n ě 2.

§ TCpX q “ 2n ðñ v
2n ‰ 0.

§ If G “ Z2 then v
2n “ 0 and TCpX q ď 2n ´ 1.
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M closed manifold with dimM “ n and π1pMq “ G

Proposition. If π1pMq “ G is abelian then

TCpMq ă 2n ô α˚pm ˆ mq “ 0 in H2npBG ; rZq.

‚ α˚ is induced by G ˆ G Ñ G , αpa, bq “ ab´1

‚ m “ γ˚prMsq P HnpBG ; rZq where:

§ γ : M Ñ BG is a map s.t π1pγq : π1pMq
–
Ñ π1pBG q “ G .

§ rZ: Z with the action of G given by the orientation character
w : G “ π1pMq Ñ t˘1u.

§ rMs P HnpM; rZq – Z is the (twisted) fundamental class of M.



Study of α˚pc ˆ cq for c P HnpBG ; rZq

G finitely generated abelian group with action on rZ.
H˚pBG ; rZq is a Pontrjagin algebra with a strictly anti-commutative
product ^
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Study of α˚pc ˆ cq for c P HnpBG ; rZq

G finitely generated abelian group with action on rZ.
H˚pBG ; rZq is a Pontrjagin algebra with a strictly anti-commutative
product ^

c ^ d “ p´1q|c||d|d ^ c with c ^ c “ 0 when |c| is odd.

Considering the morphism induced by the inversion of G

I : H˚pBG ; rZq Ñ H˚pBG ; rZq

we have
α˚pc ˆ cq “ c ^ I pcq.

If I pcq “ ˘c and |c| is odd then α˚pc ˆ cq “ ˘c ^ c “ 0.
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Proposition. For c P HnpBG ; rZq, we have α˚pc ˆ cq “ 0 when

‚ the action of G on rZ is not trivial

‚ the action of G on rZ is trivial and G is of one of the following
forms.

1. Zr with either n odd or n even such that r ă 2n
2. Zr ˆ Zpa with p prime and r ă n

3. Zr ˆ Zpa ˆ Zpb with p with r ď 1
4. Zpa ˆ Zpb ˆ Zpc

5. Zr ˆ pZ2qs with either n odd or n even such that r ă 2n

All the conditions are sharp. In (2) r ă n is sharp because for
G “ Z7 ˆ Z3, there exists c P H7pBG ; rZq such that α˚pc ˆ cq ‰ 0.

By using surgery, we realize this class as c “ γ˚prMsq where

M mfld, γ : M Ñ BG s.t. π1pγq iso.

We get a mfld M with π1pMq “ Z7 ˆ Z3 and TCpMq “ 2 dimM.


