On the topological complexity of surfaces and other manifolds

Lucile Vandembroucq

Centro de Matemática - Universidade do Minho

joint work with Daniel C. Cohen

08/03/2024

Motivation- Motion planning problem of a mechanical system.

Motivation- Motion planning problem of a mechanical system.

Motivation- Motion planning problem of a mechanical system.

Configuration space of the system
Space X of all the possible positions of the system

Configuration space of the system

Space X of all the possible positions of the system

- Previous examples:
$X=$ full square, $X=$ full square with a hole.

Configuration space of the system
Space X of all the possible positions of the system

- Previous examples:
$X=$ full square, $X=$ full square with a hole.
- System=robotic arm with fixed origin

Configuration space of the system

Space X of all the possible positions of the system

- Previous examples:
$X=$ full square, $X=$ full square with a hole.
- System=robotic arm with fixed origin

in the plane $\mathbb{R}^{2}: X=$ circle
in the space $\mathbb{R}^{3}: X=$ sphere
$X=S^{1}$
$X=S^{2}$
- System=articulated arm with two axis and fixed origin

$$
X=\text { product of } 2 \text { circles } \quad X=S^{1} \times S^{1}
$$

- System=articulated arm with two axis and fixed origin

$X=$ product of 2 circles $\quad X=S^{1} \times S^{1}$
- System $=$ bar revolving about its center (in \mathbb{R}^{3})

$X=\mathbb{R} \mathbb{P}^{2}=$ projective plane $=\left\{\right.$ lines of \mathbb{R}^{3} through $\left.\overrightarrow{0}\right\}$

Motion planner

Let X be a nice topological space, say a manifold, a CW-complex.

$$
\begin{aligned}
s: X \times X & \rightarrow X^{[0,1]}=\{\gamma:[0,1] \rightarrow X \text { continuous }\} \\
(A, B) & \mapsto \gamma \text { such that } \gamma(0)=A, \gamma(1)=B
\end{aligned}
$$

In other words, it is a section $s: X \times X \rightarrow X^{[0,1]}$ of the evaluation map $\quad e v_{0,1}: X^{[0,1]} \rightarrow X \times X \quad e v_{0,1} \circ s=i d$

$$
\gamma \mapsto(\gamma(0), \gamma(1))
$$

Motion planner

Let X be a nice topological space, say a manifold, a CW-complex.

$$
\begin{aligned}
s: X \times X & \rightarrow X^{[0,1]}=\{\gamma:[0,1] \rightarrow X \text { continuous }\} \\
(A, B) & \mapsto \gamma \text { such that } \gamma(0)=A, \gamma(1)=B
\end{aligned}
$$

In other words, it is a section $s: X \times X \rightarrow X^{[0,1]}$ of the evaluation map $\quad e v_{0,1}: X^{[0,1]} \rightarrow X \times X \quad e v_{0,1} \circ s=i d$

$$
\gamma \mapsto(\gamma(0), \gamma(1))
$$

Such a section always exists when X is path-connected but is not continuous in general.

$X=S^{1}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$

$s(A, B)=\left\{\begin{array}{l}\text { shortest path if } B \neq-A \\ \text { counterclockwise meridian if } B=-A\end{array}\right.$

$$
X=S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}
$$

$$
V(x, y, z)=(-y, x, 0)
$$

$s(A, B)=\left\{\begin{array}{l}\text { shortest path if } B \neq-A \\ \text { meridian given by } V(A) \text { if } B=-A \text { and } A \notin\{N, S\} \\ \text { a preferred meridian if }(A, B)=(N, S) \text { or }(S, N)\end{array}\right.$

TC- Topological Complexity

$\mathrm{TC}=$ minimal number of continuous local sections -1

TC- Topological Complexity

$\mathrm{TC}=$ minimal number of continuous local sections -1

Definition. (Farber, 2003) Suppose X is path-connected. TC (X) is the least n such that

$$
X \times X=F_{0} \cup \ldots \cup F_{n}
$$

- para $i \neq j, F_{i} \cap F_{j}=\varnothing$,
- $F_{i} \subset X \times X$ is nice (ENR - Euclidian Neighborhood Retract),
- on each F_{i} there exists a continuous local section of $e v_{0,1}: X^{[0,1]} \rightarrow X \times X$

Equivalently: $\mathrm{TC}(X)$ is the least n such that

$$
X \times X=U_{0} \cup \ldots \cup U_{n}
$$

where each U_{i} is an open set with a local continuous section of $e v_{0,1}$.

- TC is a homotopy invariant:

$$
\text { If } X \simeq Y \text { then } \mathrm{TC}(X)=\mathrm{TC}(Y)
$$

- $\mathrm{TC}(X)=0$ if and only if X is contractible $(X \simeq *)$.

TC of the spheres

As seen before: $\mathrm{TC}\left(S^{1}\right) \leqslant 1$ and $\mathrm{TC}\left(S^{2}\right) \leqslant 2$.

TC of the spheres

As seen before: $\mathrm{TC}\left(S^{1}\right) \leqslant 1$ and $\mathrm{TC}\left(S^{2}\right) \leqslant 2$.
Theorem. (Farber, 2003) For $n \geqslant 1$

$$
\mathrm{TC}\left(S^{2 n-1}\right)=1 \quad \mathrm{TC}\left(S^{2 n}\right)=2 .
$$

TC of the spheres

As seen before: $\mathrm{TC}\left(S^{1}\right) \leqslant 1$ and $\mathrm{TC}\left(S^{2}\right) \leqslant 2$.
Theorem. (Farber, 2003) For $n \geqslant 1$

$$
\mathrm{TC}\left(S^{2 n-1}\right)=1 \quad \mathrm{TC}\left(S^{2 n}\right)=2 .
$$

Theorem. (Grant, Lupton, Oprea)
$\mathrm{TC}(X)=1$ iff X is homotopically equivalent to $S^{2 n-1}$.

Lusternik-Schnirelmann category

Definition. The Lusternik-Schnirelmann category of X, cat X, is the least integer n such that X can be covered by $n+1$ open sets, each of which is contractible in X,

$$
X=A_{0} \cup \ldots \cup A_{n} \quad A_{0}, \ldots, A_{n} \text { contractible in } X
$$

Lusternik-Schnirelmann category

Definition. The Lusternik-Schnirelmann category of X, cat X, is the least integer n such that X can be covered by $n+1$ open sets, each of which is contractible in X,

$$
X=A_{0} \cup \ldots \cup A_{n} \quad A_{0}, \ldots, A_{n} \text { contractible in } X
$$

Lusternik-Schnirelmann category

Definition. The Lusternik-Schnirelmann category of X, cat X, is the least integer n such that X can be covered by $n+1$ open sets, each of which is contractible in X,

$$
X=A_{0} \cup \ldots \cup A_{n} \quad A_{0}, \ldots, A_{n} \text { contractible in } X
$$

- cat is a homotopy invariant
- $\operatorname{cat}(X)=0$ iff $X \simeq *$ and $\operatorname{cat}\left(S^{n}\right)=1$ for any $n \geqslant 1$
- $\operatorname{cat}(X) \leqslant \operatorname{dim}(X)$

Theorem. (Farber + classical results)

$$
\operatorname{cat}(X) \leqslant \mathrm{TC}(X) \leqslant \operatorname{cat}(X \times X) \leqslant 2 \operatorname{cat}(X) \leqslant 2 \operatorname{dim}(X)
$$

Theorem. (Farber + classical results)

$$
\operatorname{cat}(X) \leqslant \mathrm{TC}(X) \leqslant \operatorname{cat}(X \times X) \leqslant 2 \operatorname{cat}(X) \leqslant 2 \operatorname{dim}(X)
$$

We say that $\mathrm{TC}(X)$ is maximal when

$$
\mathrm{TC}(X)=2 \operatorname{dim}(X)
$$

Theorem. (Farber + classical results)

$$
\operatorname{cat}(X) \leqslant \mathrm{TC}(X) \leqslant \operatorname{cat}(X \times X) \leqslant 2 \operatorname{cat}(X) \leqslant 2 \operatorname{dim}(X)
$$

We say that $\mathrm{TC}(X)$ is maximal when

$$
\mathrm{TC}(X)=2 \operatorname{dim}(X)
$$

This only can happen when $\pi_{1}(X) \neq 0$ because

$$
\pi_{1}(X)=0 \Rightarrow \operatorname{cat}(X) \leqslant \frac{\operatorname{dim} X}{2} \quad \text { and } \quad \mathrm{TC}(X) \leqslant \operatorname{dim}(X)
$$

Surfaces (compact, connected, without boundary)

Orientable surfaces

$S^{2} \quad T=S^{1} \times S^{1}$

Surfaces (compact, connected, without boundary)

Orientable surfaces

Theorem. (Farber, 2003)

- $\operatorname{TC}\left(S^{2}\right)=2$
- $\mathrm{TC}(T)=2$
- for $g \geqslant 2, \mathrm{TC}\left(T_{g}\right)=4$.

Nonorientable surfaces: $\mathbb{R P}^{2}$, Klein bottle K, \ldots

$$
K=\mathbb{R} \mathbb{P}^{2} \# \mathbb{R} \mathbb{P}^{2}, \quad N_{g}=\underbrace{\mathbb{R} \mathbb{P}^{2} \# \cdots \# \mathbb{R} \mathbb{P}^{2}}_{g}
$$

Nonorientable surfaces: $\mathbb{R P}^{2}$, Klein bottle K, \ldots

$$
K=\mathbb{R P}^{2} \# \mathbb{R} \mathbb{P}^{2}, \quad N_{g}=\underbrace{\mathbb{R P}^{2} \# \cdots \# \mathbb{R P}^{2}}_{g}
$$

Theorem.(Farber, Tabachnikov, Yuzvinsky, 2003) $\mathrm{TC}\left(\mathbb{R P}^{2}\right)=3$

Nonorientable surfaces: $\mathbb{R P}^{2}$, Klein bottle K, \ldots

$$
K=\mathbb{R P}^{2} \# \mathbb{R P}^{2}, \quad N_{g}=\underbrace{\mathbb{R P}^{2} \# \cdots \# \mathbb{R P}^{2}}_{g}
$$

Theorem.(Farber, Tabachnikov, Yuzvinsky, 2003) $\mathrm{TC}\left(\mathbb{R P}^{2}\right)=3$
Theorem.(Dranishnikov, 2016) For $g \geqslant 4, \mathrm{TC}\left(N_{g}\right)=4$.

Nonorientable surfaces: $\mathbb{R P}^{2}$, Klein bottle K, \ldots

$$
K=\mathbb{R P}^{2} \# \mathbb{R P}^{2}, \quad N_{g}=\underbrace{\mathbb{R P}^{2} \# \cdots \# \mathbb{R P}^{2}}_{g}
$$

Theorem.(Farber, Tabachnikov, Yuzvinsky, 2003) TC($\left.\mathbb{R P}^{2}\right)=3$
Theorem.(Dranishnikov, 2016) For $g \geqslant 4, \mathrm{TC}\left(N_{g}\right)=4$.
Theorem.(Cohen, V, 2017) $\mathrm{TC}(K)=4$. For $g \geqslant 2, \mathrm{TC}\left(N_{g}\right)=4$.

Connected sums of $\mathbb{R}^{n}{ }^{n}$

In analogy to $N_{g}=\mathbb{R}^{2} \# \cdots \# \mathbb{R} \mathbb{P}^{2}$ (g copies), we consider

$$
\mathcal{P}_{g}^{n}:=\underbrace{\mathbb{R P}^{n} \# \cdots \# \mathbb{R}^{n}}_{g \text { copies }}
$$

Connected sums of $\mathbb{R}^{n}{ }^{n}$

In analogy to $N_{g}=\mathbb{R}^{2} \# \cdots \# \mathbb{R} \mathbb{P}^{2}$ (g copies), we consider

$$
\mathcal{P}_{g}^{n}:=\underbrace{\mathbb{R} \mathbb{P}^{n} \# \cdots \# \mathbb{R}^{n}}_{g \text { copies }}
$$

Theorem. (Cohen-V., 2018) For $n \geqslant 2$ and $g \geqslant 2, \mathrm{TC}\left(\mathcal{P}_{g}^{n}\right)=2 n$.

Connected sums of $\mathbb{R}^{n}{ }^{n}$

In analogy to $N_{g}=\mathbb{R}^{2} \# \cdots \# \mathbb{R} \mathbb{P}^{2}$ (g copies), we consider

$$
\mathcal{P}_{g}^{n}:=\underbrace{\mathbb{R} \mathbb{P}^{n} \# \cdots \# \mathbb{R}^{n}}_{g \text { copies }}
$$

Theorem. (Cohen-V., 2018) For $n \geqslant 2$ and $g \geqslant 2, \mathrm{TC}\left(\mathcal{P}_{g}^{n}\right)=2 n$.
Case $g=1, \mathcal{P}_{1}^{n}=\mathbb{R}^{n}$ (Farber, Tabachnikov, Yuzvinsky - 2003)

Connected sums of $\mathbb{R} \mathbb{P}^{n}$

In analogy to $N_{g}=\mathbb{R P}^{2} \# \cdots \# \mathbb{R} \mathbb{P}^{2}$ (g copies), we consider

$$
\mathcal{P}_{g}^{n}:=\underbrace{\mathbb{R P}^{n} \# \cdots \# \mathbb{R P}^{n}}_{g \text { copies }}
$$

Theorem. (Cohen-V., 2018) For $n \geqslant 2$ and $g \geqslant 2, \mathrm{TC}\left(\mathcal{P}_{g}^{n}\right)=2 n$.
Case $g=1, \mathcal{P}_{1}^{n}=\mathbb{R P}^{n}$ (Farber, Tabachnikov, Yuzvinsky - 2003)
Theorem. (FTY) For $n=1,3$ or $7, \mathrm{TC}\left(\mathbb{R P}^{n}\right)=n$.
For $n \neq 1,3,7, \mathrm{TC}\left(\mathbb{R P}^{n}\right)$ is the least integer k such that there exists an immersion of $\mathbb{R} \mathbb{P}^{n}$ in \mathbb{R}^{k}.

Connected sums of $\mathbb{R} \mathbb{P}^{n}$

In analogy to $N_{g}=\mathbb{R P}^{2} \# \cdots \# \mathbb{R} \mathbb{P}^{2}$ (g copies), we consider

$$
\mathcal{P}_{g}^{n}:=\underbrace{\mathbb{R P}^{n} \# \cdots \# \mathbb{R P}^{n}}_{g \text { copies }}
$$

Theorem. (Cohen-V., 2018) For $n \geqslant 2$ and $g \geqslant 2, \mathrm{TC}\left(\mathcal{P}_{g}^{n}\right)=2 n$.
Case $g=1, \mathcal{P}_{1}^{n}=\mathbb{R P}^{n}$ (Farber, Tabachnikov, Yuzvinsky - 2003)
Theorem. (FTY) For $n=1,3$ or $7, \mathrm{TC}\left(\mathbb{R P}^{n}\right)=n$.
For $n \neq 1,3,7, \mathrm{TC}\left(\mathbb{R P}^{n}\right)$ is the least integer k such that there exists an immersion of $\mathbb{R} \mathbb{P}^{n}$ in \mathbb{R}^{k}.

In particular, $\mathrm{TC}\left(\mathbb{R}^{P} \mathbb{P}^{n}\right) \leqslant 2 n-1$.

Theorem. (Farber, Costa, 2010) Let M be a manifold with fundamental group $\pi_{1}(M)=\mathbb{Z}_{2}$. Then $\operatorname{TC}(M) \leqslant 2 \operatorname{dim}(M)-1$.

Theorem. (Farber, Costa, 2010) Let M be a manifold with fundamental group $\pi_{1}(M)=\mathbb{Z}_{2}$. Then $\mathrm{TC}(M) \leqslant 2 \operatorname{dim}(M)-1$.

Theorem. (Cohen-V., 2021) Let M be a nonorientable manifold with abelian fundamental group. Then $\mathrm{TC}(M) \leqslant 2 \operatorname{dim}(M)-1$.

Theorem. (Farber, Costa, 2010) Let M be a manifold with fundamental group $\pi_{1}(M)=\mathbb{Z}_{2}$. Then $\mathrm{TC}(M) \leqslant 2 \operatorname{dim}(M)-1$.

Theorem. (Cohen-V., 2021) Let M be a nonorientable manifold with abelian fundamental group. Then $\mathrm{TC}(M) \leqslant 2 \operatorname{dim}(M)-1$.

Theorem. (Cohen-V., 2021) Let M be an n-dimensional orientable manifold with abelian fundamental group $\pi_{1}(M)$ of one of the following forms:

1. \mathbb{Z}^{r} with either n odd or n even such that $r<2 n$

Theorem. (Farber, Costa, 2010) Let M be a manifold with fundamental group $\pi_{1}(M)=\mathbb{Z}_{2}$. Then $\mathrm{TC}(M) \leqslant 2 \operatorname{dim}(M)-1$.

Theorem. (Cohen-V., 2021) Let M be a nonorientable manifold with abelian fundamental group. Then $\mathrm{TC}(M) \leqslant 2 \operatorname{dim}(M)-1$.

Theorem. (Cohen-V., 2021) Let M be an n-dimensional orientable manifold with abelian fundamental group $\pi_{1}(M)$ of one of the following forms:

1. \mathbb{Z}^{r} with either n odd or n even such that $r<2 n$
2. $\mathbb{Z}^{r} \times \mathbb{Z}_{p^{a}}$ with p prime and $r<n$

Theorem. (Farber, Costa, 2010) Let M be a manifold with fundamental group $\pi_{1}(M)=\mathbb{Z}_{2}$. Then $\mathrm{TC}(M) \leqslant 2 \operatorname{dim}(M)-1$.

Theorem. (Cohen-V., 2021) Let M be a nonorientable manifold with abelian fundamental group. Then $\mathrm{TC}(M) \leqslant 2 \operatorname{dim}(M)-1$.

Theorem. (Cohen-V., 2021) Let M be an n-dimensional orientable manifold with abelian fundamental group $\pi_{1}(M)$ of one of the following forms:

1. \mathbb{Z}^{r} with either n odd or n even such that $r<2 n$
2. $\mathbb{Z}^{r} \times \mathbb{Z}_{p^{a}}$ with p prime and $r<n$
3. $\mathbb{Z}^{r} \times \mathbb{Z}_{p^{a}} \times \mathbb{Z}_{p^{b}}$ and $r \leqslant 1$

Theorem. (Farber, Costa, 2010) Let M be a manifold with fundamental group $\pi_{1}(M)=\mathbb{Z}_{2}$. Then $\mathrm{TC}(M) \leqslant 2 \operatorname{dim}(M)-1$.

Theorem. (Cohen-V., 2021) Let M be a nonorientable manifold with abelian fundamental group. Then $\mathrm{TC}(M) \leqslant 2 \operatorname{dim}(M)-1$.

Theorem. (Cohen-V., 2021) Let M be an n-dimensional orientable manifold with abelian fundamental group $\pi_{1}(M)$ of one of the following forms:

1. \mathbb{Z}^{r} with either n odd or n even such that $r<2 n$
2. $\mathbb{Z}^{r} \times \mathbb{Z}_{p^{a}}$ with p prime and $r<n$
3. $\mathbb{Z}^{r} \times \mathbb{Z}_{p^{a}} \times \mathbb{Z}_{p^{b}}$ and $r \leqslant 1$
4. $\mathbb{Z}_{p^{a}} \times \mathbb{Z}_{p^{b}} \times \mathbb{Z}_{p^{c}}$

Theorem. (Farber, Costa, 2010) Let M be a manifold with fundamental group $\pi_{1}(M)=\mathbb{Z}_{2}$. Then $\mathrm{TC}(M) \leqslant 2 \operatorname{dim}(M)-1$.

Theorem. (Cohen-V., 2021) Let M be a nonorientable manifold with abelian fundamental group. Then $\mathrm{TC}(M) \leqslant 2 \operatorname{dim}(M)-1$.

Theorem. (Cohen-V., 2021) Let M be an n-dimensional orientable manifold with abelian fundamental group $\pi_{1}(M)$ of one of the following forms:

1. \mathbb{Z}^{r} with either n odd or n even such that $r<2 n$
2. $\mathbb{Z}^{r} \times \mathbb{Z}_{p^{a}}$ with p prime and $r<n$
3. $\mathbb{Z}^{r} \times \mathbb{Z}_{p^{a}} \times \mathbb{Z}_{p^{b}}$ and $r \leqslant 1$
4. $\mathbb{Z}_{p^{a}} \times \mathbb{Z}_{p^{b}} \times \mathbb{Z}_{p^{c}}$
5. $\mathbb{Z}^{r} \times\left(\mathbb{Z}_{2}\right)^{s}$ with either n odd or n even such that $r<2 n$

Then $\mathrm{TC}(M) \leqslant 2 \operatorname{dim}(M)-1$.

Cohomological lower bounds

- Cup-length of $H^{*}(X ; \mathbb{k})$
$\operatorname{cl}_{\mathbb{k}}(X)=\max \left\{n \mid a_{1} \cdots a_{n} \neq 0, a_{i} \in H^{>0}(X ; \mathbb{k})\right\}$

$$
\operatorname{cl}_{\mathrm{k}}(X) \leqslant \operatorname{cat}(X) \leqslant \operatorname{dim}(X)
$$

Ex: $\operatorname{cl}_{\mathbb{k}}\left(S^{1} \times S^{1}\right)=\operatorname{cat}\left(S^{1} \times S^{1}\right)=2$.

Cohomological lower bounds

- Cup-length of $H^{*}(X ; \mathbb{k})$
$\operatorname{cl}_{\mathfrak{k}}(X)=\max \left\{n \mid a_{1} \cdots a_{n} \neq 0, a_{i} \in H^{>0}(X ; \mathbb{k})\right\}$

$$
\operatorname{cl}_{\mathrm{k}}(X) \leqslant \operatorname{cat}(X) \leqslant \operatorname{dim}(X)
$$

Ex: $\operatorname{cl}_{\mathbb{k}}\left(S^{1} \times S^{1}\right)=\operatorname{cat}\left(S^{1} \times S^{1}\right)=2$.

- (Farber) Zero divisor cup-length of $H^{*}(X ; \mathbb{k})$

Cohomological lower bounds

- Cup-length of $H^{*}(X ; \mathbb{k})$
$\operatorname{cl}_{\mathbb{k}}(X)=\max \left\{n \mid a_{1} \cdots a_{n} \neq 0, a_{i} \in H^{>0}(X ; \mathbb{k})\right\}$

$$
\operatorname{cl}_{\mathbb{k}}(X) \leqslant \operatorname{cat}(X) \leqslant \operatorname{dim}(X)
$$

Ex: $\operatorname{cl}_{k}\left(S^{1} \times S^{1}\right)=\operatorname{cat}\left(S^{1} \times S^{1}\right)=2$.

- (Farber) Zero divisor cup-length of $H^{*}(X ; \mathbb{k})$ zero divisor: element of the ker of $H^{*}(X) \otimes H^{*}(X) \rightarrow H^{*}(X)$

Cohomological lower bounds

- Cup-length of $H^{*}(X ; \mathbb{k})$
$\operatorname{cl}_{\mathbb{k}}(X)=\max \left\{n \mid a_{1} \cdots a_{n} \neq 0, a_{i} \in H^{>0}(X ; \mathbb{k})\right\}$

$$
\operatorname{cl}_{\mathrm{k}}(X) \leqslant \operatorname{cat}(X) \leqslant \operatorname{dim}(X)
$$

Ex: $\operatorname{cl}_{k}\left(S^{1} \times S^{1}\right)=\operatorname{cat}\left(S^{1} \times S^{1}\right)=2$.

- (Farber) Zero divisor cup-length of $H^{*}(X ; \mathbb{k})$ zero divisor: element of the ker of $H^{*}(X) \otimes H^{*}(X) \rightarrow H^{*}(X)$

$$
\mathrm{zcl}_{\mathbb{k}}(X)=\max \left\{n \mid z_{1} \cdots z_{n} \neq 0, z_{i} \text { zero divisor }\right\}
$$

Theorem. (Farber) $\mathrm{zcl}_{\mathbb{k}}(X) \leqslant \mathrm{TC}(X)$

Cohomological lower bounds

$$
\left.\begin{array}{l}
\operatorname{cat}(X) \\
\operatorname{zcl}_{k k}(X)
\end{array}\right\} \leqslant \operatorname{TC}(X) \leqslant 2 \operatorname{cat}(X) \leqslant 2 \operatorname{dim}(X)
$$

Cohomological lower bounds

$$
\left.\begin{array}{l}
\operatorname{cat}(X) \\
\operatorname{zcl}_{k}(X)
\end{array}\right\} \leqslant \mathrm{TC}(X) \leqslant 2 \operatorname{cat}(X) \leqslant 2 \operatorname{dim}(X)
$$

Example (Farber, 2003) $\mathrm{TC}\left(S^{n}\right)=2$ if n is even.

Cohomological lower bounds

$$
\left.\begin{array}{l}
\operatorname{cat}(X) \\
\operatorname{zcl}_{\mathrm{k}}(X)
\end{array}\right\} \leqslant \mathrm{TC}(X) \leqslant 2 \operatorname{cat}(X) \leqslant 2 \operatorname{dim}(X)
$$

Example (Farber, 2003) $\mathrm{TC}\left(S^{n}\right)=2$ if n is even.

- $\operatorname{cat}\left(S^{n}\right)=1 \Longrightarrow 1 \leqslant \mathrm{TC}\left(S^{n}\right) \leqslant 2$.

Cohomological lower bounds

$$
\left.\begin{array}{l}
\operatorname{cat}(X) \\
\operatorname{zcl}_{\mathbb{k}}(X)
\end{array}\right\} \leqslant \mathrm{TC}(X) \leqslant 2 \operatorname{cat}(X) \leqslant 2 \operatorname{dim}(X)
$$

Example (Farber, 2003) $\mathrm{TC}\left(S^{n}\right)=2$ if n is even.

- $\operatorname{cat}\left(S^{n}\right)=1 \Longrightarrow 1 \leqslant \mathrm{TC}\left(S^{n}\right) \leqslant 2$.
- zero divisors: $\mathbb{Q}(x \otimes 1-1 \otimes x) \oplus \mathbb{Q} \cdot x \otimes x \quad x \in H^{n}\left(S^{n} ; \mathbb{Q}\right)$

Cohomological lower bounds

$$
\left.\begin{array}{l}
\operatorname{cat}(X) \\
\operatorname{zcl}_{\mathbb{k}}(X)
\end{array}\right\} \leqslant \mathrm{TC}(X) \leqslant 2 \operatorname{cat}(X) \leqslant 2 \operatorname{dim}(X)
$$

Example (Farber, 2003) $\mathrm{TC}\left(S^{n}\right)=2$ if n is even.

- $\operatorname{cat}\left(S^{n}\right)=1 \Longrightarrow 1 \leqslant \mathrm{TC}\left(S^{n}\right) \leqslant 2$.
- zero divisors: $\mathbb{Q}(x \otimes 1-1 \otimes x) \oplus \mathbb{Q} \cdot x \otimes x \quad x \in H^{n}\left(S^{n} ; \mathbb{Q}\right)$
- $(x \otimes 1-1 \otimes x)^{2}=-x \otimes x-(-1)^{n} x \otimes x \neq 0$ if n is even.

Cohomological lower bounds

$$
\left.\begin{array}{l}
\operatorname{cat}(X) \\
\operatorname{zcl}_{\mathbb{k}}(X)
\end{array}\right\} \leqslant \mathrm{TC}(X) \leqslant 2 \operatorname{cat}(X) \leqslant 2 \operatorname{dim}(X)
$$

Example (Farber, 2003) $\mathrm{TC}\left(S^{n}\right)=2$ if n is even.

- $\operatorname{cat}\left(S^{n}\right)=1 \Longrightarrow 1 \leqslant \mathrm{TC}\left(S^{n}\right) \leqslant 2$.
- zero divisors: $\mathbb{Q}(x \otimes 1-1 \otimes x) \oplus \mathbb{Q} \cdot x \otimes x \quad x \in H^{n}\left(S^{n} ; \mathbb{Q}\right)$
- $(x \otimes 1-1 \otimes x)^{2}=-x \otimes x-(-1)^{n} x \otimes x \neq 0$ if n is even.
- Therefore $\operatorname{zcl}_{\mathbb{Q}}\left(S^{n}\right)=2$ when n is even.

The calculation of $\mathrm{zcl}_{\mathrm{lk}}$ (together with good upper bounds) has been sufficient for determining the value of TC in many cases including the orientable surfaces, $\mathbb{R}^{2} \mathbb{P}^{2}, \ldots$

For $N_{g}, g \geqslant 2$, the best we can say with this approach (taking $\left.\mathbb{k}=\mathbb{Z}_{2}\right)$ is

$$
3 \leqslant \mathrm{TC}\left(N_{g}\right) \leqslant 4
$$

For proving $\mathrm{TC}\left(N_{g}\right)=4, g \geqslant 2$

- We have used a notion of zero-divisor with twisted coefficients, in particular the Costa-Farber class:

$$
\mathfrak{v} \in H^{1}(X \times X ; I(G))
$$

where $G=\pi_{1}(X), I(G)=\left\{\sum n_{i} g_{i} \mid \sum n_{i}=0\right\} \subset \mathbb{Z}[G]$ given with an action of $G \times G$.

For proving $\mathrm{TC}\left(N_{g}\right)=4, g \geqslant 2$

- We have used a notion of zero-divisor with twisted coefficients, in particular the Costa-Farber class:

$$
\mathfrak{v} \in H^{1}(X \times X ; I(G))
$$

where $G=\pi_{1}(X), I(G)=\left\{\sum n_{i} g_{i} \mid \sum n_{i}=0\right\} \subset \mathbb{Z}[G]$ given with an action of $G \times G$.

- Using the bar resolution associated to a group (and many calculations) we proved that $\mathfrak{v}^{4} \neq 0$ when $X=N_{g}$ with $g \geqslant 2$.

For proving $\mathrm{TC}\left(N_{g}\right)=4, g \geqslant 2$

- We have used a notion of zero-divisor with twisted coefficients, in particular the Costa-Farber class:

$$
\mathfrak{v} \in H^{1}(X \times X ; I(G))
$$

where $G=\pi_{1}(X), I(G)=\left\{\sum n_{i} g_{i} \mid \sum n_{i}=0\right\} \subset \mathbb{Z}[G]$ given with an action of $G \times G$.

- Using the bar resolution associated to a group (and many calculations) we proved that $\mathfrak{v}^{4} \neq 0$ when $X=N_{g}$ with $g \geqslant 2$.

Theorem (Costa-Farber, 2010) Suppose that $\operatorname{dim}(X)=n \geqslant 2$.

- $\mathrm{TC}(X)=2 n \Longleftrightarrow \mathfrak{v}^{2 n} \neq 0$.

For proving $\mathrm{TC}\left(N_{g}\right)=4, g \geqslant 2$

- We have used a notion of zero-divisor with twisted coefficients, in particular the Costa-Farber class:

$$
\mathfrak{v} \in H^{1}(X \times X ; I(G))
$$

where $G=\pi_{1}(X), I(G)=\left\{\sum n_{i} g_{i} \mid \sum n_{i}=0\right\} \subset \mathbb{Z}[G]$ given with an action of $G \times G$.

- Using the bar resolution associated to a group (and many calculations) we proved that $\mathfrak{v}^{4} \neq 0$ when $X=N_{g}$ with $g \geqslant 2$.

Theorem (Costa-Farber, 2010) Suppose that $\operatorname{dim}(X)=n \geqslant 2$.

- $\mathrm{TC}(X)=2 n \Longleftrightarrow \mathfrak{v}^{2 n} \neq 0$.
- If $G=\mathbb{Z}_{2}$ then $\mathfrak{v}^{2 n}=0$ and $\mathrm{TC}(X) \leqslant 2 n-1$.

M closed manifold with $\operatorname{dim} M=n$ and $\pi_{1}(M)=G$

Proposition. If $\pi_{1}(M)=G$ is abelian then

$$
\mathrm{TC}(M)<2 n \Leftrightarrow \alpha_{*}(\mathrm{~m} \times \mathrm{m})=0 \quad \text { in } H_{2 n}(B G ; \widetilde{\mathbb{Z}})
$$

M closed manifold with $\operatorname{dim} M=n$ and $\pi_{1}(M)=G$

Proposition. If $\pi_{1}(M)=G$ is abelian then

$$
\mathrm{TC}(M)<2 n \Leftrightarrow \alpha_{*}(\mathrm{~m} \times \mathrm{m})=0 \quad \text { in } H_{2 n}(B G ; \widetilde{\mathbb{Z}})
$$

- α_{*} is induced by $\quad G \times G \rightarrow G, \quad \alpha(a, b)=a b^{-1}$
M closed manifold with $\operatorname{dim} M=n$ and $\pi_{1}(M)=G$

Proposition. If $\pi_{1}(M)=G$ is abelian then

$$
\mathrm{TC}(M)<2 n \Leftrightarrow \alpha_{*}(\mathrm{~m} \times \mathrm{m})=0 \quad \text { in } H_{2 n}(B G ; \widetilde{\mathbb{Z}})
$$

- α_{*} is induced by $\quad G \times G \rightarrow G, \quad \alpha(a, b)=a b^{-1}$
- $\mathrm{m}=\gamma_{*}([M]) \in H_{n}(B G ; \widetilde{\mathbb{Z}})$ where:
- $\gamma: M \rightarrow B G$ is a map s.t $\pi_{1}(\gamma): \pi_{1}(M) \xlongequal{\cong} \pi_{1}(B G)=G$.

M closed manifold with $\operatorname{dim} M=n$ and $\pi_{1}(M)=G$

Proposition. If $\pi_{1}(M)=G$ is abelian then

$$
\mathrm{TC}(M)<2 n \Leftrightarrow \alpha_{*}(\mathrm{~m} \times \mathrm{m})=0 \quad \text { in } H_{2 n}(B G ; \widetilde{\mathbb{Z}})
$$

- α_{*} is induced by $\quad G \times G \rightarrow G, \quad \alpha(a, b)=a b^{-1}$
- $\mathrm{m}=\gamma_{*}([M]) \in H_{n}(B G ; \widetilde{\mathbb{Z}})$ where:
- $\gamma: M \rightarrow B G$ is a map s.t $\pi_{1}(\gamma): \pi_{1}(M) \xlongequal{\cong} \pi_{1}(B G)=G$.
- $\widetilde{\mathbb{Z}}: \mathbb{Z}$ with the action of G given by the orientation character $w: G=\pi_{1}(M) \rightarrow\{ \pm 1\}$.
- $[M] \in H_{n}(M ; \widetilde{\mathbb{Z}}) \cong \mathbb{Z}$ is the (twisted) fundamental class of M.

Study of $\alpha_{*}(\mathrm{c} \times \mathrm{c})$ for $\mathrm{c} \in H_{n}(B G ; \widetilde{\mathbb{Z}})$

G finitely generated abelian group with action on $\widetilde{\mathbb{Z}}$.
$H_{*}(B G ; \widetilde{\mathbb{Z}})$ is a Pontrjagin algebra with a strictly anti-commutative product \wedge

$$
c \wedge d=(-1)^{|c||d|} d \wedge c \text { with } c \wedge c=0 \text { when }|c| \text { is odd. }
$$

Study of $\alpha_{*}(\mathrm{c} \times \mathrm{c})$ for $\mathrm{c} \in H_{n}(B G ; \widetilde{\mathbb{Z}})$

G finitely generated abelian group with action on $\widetilde{\mathbb{Z}}$.
$H_{*}(B G ; \widetilde{\mathbb{Z}})$ is a Pontrjagin algebra with a strictly anti-commutative product \wedge

$$
c \wedge d=(-1)^{|c||d|} d \wedge c \text { with } c \wedge c=0 \text { when }|c| \text { is odd. }
$$

Considering the morphism induced by the inversion of G

$$
I: H_{*}(B G ; \widetilde{\mathbb{Z}}) \rightarrow H_{*}(B G ; \widetilde{\mathbb{Z}})
$$

we have

$$
\alpha_{*}(\mathrm{c} \times \mathrm{c})=\mathrm{c} \wedge I(\mathrm{c}) .
$$

If $I(\mathrm{c})= \pm \mathrm{c}$ and $|\mathrm{c}|$ is odd then $\alpha_{*}(\mathrm{c} \times \mathrm{c})= \pm \mathrm{c} \wedge \mathrm{c}=0$.

Proposition. For $\mathrm{c} \in H_{n}(B G ; \widetilde{\mathbb{Z}})$, we have $\alpha_{*}(\mathrm{c} \times \mathrm{c})=0$ when

- the action of G on $\widetilde{\mathbb{Z}}$ is not trivial

Proposition. For $\mathrm{c} \in H_{n}(B G ; \widetilde{\mathbb{Z}})$, we have $\alpha_{*}(\mathrm{c} \times \mathrm{c})=0$ when

- the action of G on $\widetilde{\mathbb{Z}}$ is not trivial
- the action of G on $\widetilde{\mathbb{Z}}$ is trivial and G is of one of the following forms.

1. \mathbb{Z}^{r} with either n odd or n even such that $r<2 n$
2. $\mathbb{Z}^{r} \times \mathbb{Z}_{p^{a}}$ with p prime and $r<n$
3. $\mathbb{Z}^{r} \times \mathbb{Z}_{p^{a}} \times \mathbb{Z}_{p^{b}}$ with p with $r \leqslant 1$
4. $\mathbb{Z}_{p^{a}} \times \mathbb{Z}_{p^{b}} \times \mathbb{Z}_{p^{c}}$
5. $\mathbb{Z}^{r} \times\left(\mathbb{Z}_{2}\right)^{s}$ with either n odd or n even such that $r<2 n$

Proposition. For $\mathrm{c} \in H_{n}(B G ; \widetilde{\mathbb{Z}})$, we have $\alpha_{*}(\mathrm{c} \times \mathrm{c})=0$ when

- the action of G on $\widetilde{\mathbb{Z}}$ is not trivial
- the action of G on $\widetilde{\mathbb{Z}}$ is trivial and G is of one of the following forms.

1. \mathbb{Z}^{r} with either n odd or n even such that $r<2 n$
2. $\mathbb{Z}^{r} \times \mathbb{Z}_{p^{a}}$ with p prime and $r<n$
3. $\mathbb{Z}^{r} \times \mathbb{Z}_{p^{a}} \times \mathbb{Z}_{p^{b}}$ with p with $r \leqslant 1$
4. $\mathbb{Z}_{p^{a}} \times \mathbb{Z}_{p^{b}} \times \mathbb{Z}_{p^{c}}$
5. $\mathbb{Z}^{r} \times\left(\mathbb{Z}_{2}\right)^{s}$ with either n odd or n even such that $r<2 n$

All the conditions are sharp. In (2) $r<n$ is sharp because for $G=\mathbb{Z}^{7} \times \mathbb{Z}_{3}$, there exists $\mathrm{c} \in H_{7}(B G ; \widetilde{\mathbb{Z}})$ such that $\alpha_{*}(\mathrm{c} \times \mathrm{c}) \neq 0$.

Proposition. For $\mathrm{c} \in H_{n}(B G ; \widetilde{\mathbb{Z}})$, we have $\alpha_{*}(\mathrm{c} \times \mathrm{c})=0$ when

- the action of G on $\widetilde{\mathbb{Z}}$ is not trivial
- the action of G on $\widetilde{\mathbb{Z}}$ is trivial and G is of one of the following forms.

1. \mathbb{Z}^{r} with either n odd or n even such that $r<2 n$
2. $\mathbb{Z}^{r} \times \mathbb{Z}_{p^{a}}$ with p prime and $r<n$
3. $\mathbb{Z}^{r} \times \mathbb{Z}_{p^{a}} \times \mathbb{Z}_{p^{b}}$ with p with $r \leqslant 1$
4. $\mathbb{Z}_{p^{a}} \times \mathbb{Z}_{p^{b}} \times \mathbb{Z}_{p^{c}}$
5. $\mathbb{Z}^{r} \times\left(\mathbb{Z}_{2}\right)^{s}$ with either n odd or n even such that $r<2 n$

All the conditions are sharp. In (2) $r<n$ is sharp because for $G=\mathbb{Z}^{7} \times \mathbb{Z}_{3}$, there exists $\mathrm{c} \in H_{7}(B G ; \widetilde{\mathbb{Z}})$ such that $\alpha_{*}(\mathrm{c} \times \mathrm{c}) \neq 0$.

By using surgery, we realize this class as $\mathrm{c}=\gamma_{*}([M])$ where M mfld, $\quad \gamma: M \rightarrow B G \quad$ s.t. $\pi_{1}(\gamma)$ iso.

Proposition. For $\mathrm{c} \in H_{n}(B G ; \widetilde{\mathbb{Z}})$, we have $\alpha_{*}(\mathrm{c} \times \mathrm{c})=0$ when

- the action of G on $\widetilde{\mathbb{Z}}$ is not trivial
- the action of G on $\widetilde{\mathbb{Z}}$ is trivial and G is of one of the following forms.

1. \mathbb{Z}^{r} with either n odd or n even such that $r<2 n$
2. $\mathbb{Z}^{r} \times \mathbb{Z}_{p^{a}}$ with p prime and $r<n$
3. $\mathbb{Z}^{r} \times \mathbb{Z}_{p^{a}} \times \mathbb{Z}_{p^{b}}$ with p with $r \leqslant 1$
4. $\mathbb{Z}_{p^{a}} \times \mathbb{Z}_{p^{b}} \times \mathbb{Z}_{p^{c}}$
5. $\mathbb{Z}^{r} \times\left(\mathbb{Z}_{2}\right)^{s}$ with either n odd or n even such that $r<2 n$

All the conditions are sharp. In (2) $r<n$ is sharp because for $G=\mathbb{Z}^{7} \times \mathbb{Z}_{3}$, there exists $\mathrm{c} \in H_{7}(B G ; \widetilde{\mathbb{Z}})$ such that $\alpha_{*}(\mathrm{c} \times \mathrm{c}) \neq 0$.

By using surgery, we realize this class as $\mathrm{c}=\gamma_{*}([M])$ where

$$
M \text { mfld, } \quad \gamma: M \rightarrow B G \quad \text { s.t. } \pi_{1}(\gamma) \text { iso. }
$$

We get a mfld M with $\pi_{1}(M)=\mathbb{Z}^{7} \times \mathbb{Z}_{3}$ and $\operatorname{TC}(M)=2 \operatorname{dim} M$.

