On the topological complexity of surfaces and other manifolds

Lucile Vandembroucq Centro de Matemática - Universidade do Minho *joint work with* Daniel C. Cohen

08/03/2024

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Motivation- Motion planning problem of a mechanical system.

Motivation- Motion planning problem of a mechanical system.

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○ ● ● ● ●

Motivation- Motion planning problem of a mechanical system.

Space X of all the possible positions of the system

Space X of all the possible positions of the system

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Previous examples:

X=full square, X=full square with a hole.

Space X of all the possible positions of the system

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Previous examples:

X=full square, X=full square with a hole.

System=robotic arm with fixed origin

Space X of all the possible positions of the system

Previous examples:

X=full square, X=full square with a hole.

System=robotic arm with fixed origin

in the plane \mathbb{R}^2 : X = circle $X = S^1$ in the space \mathbb{R}^3 : X = sphere $X = S^2$

・ロ・・聞・・思・・思・・ しょうくの

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

System=articulated arm with two axis and fixed origin

X =product of 2 circles $X = S^1 \times S^1$

System=articulated arm with two axis and fixed origin

- X =product of 2 circles $X = S^1 \times S^1$
- System = bar revolving about its center (in \mathbb{R}^3)

 $X = \mathbb{RP}^2$ = projective plane = {lines of \mathbb{R}^3 through $\vec{0}$ }

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Motion planner

Let X be a nice topological space, say a manifold, a CW-complex.

 $s: X \times X \rightarrow X^{[0,1]} = \{\gamma : [0,1] \rightarrow X \text{ continuous}\}$

$$(A,B) \mapsto \gamma$$
 such that $\gamma(0) = A, \ \gamma(1) = B$

In other words, it is a section $s: X \times X \to X^{[0,1]}$ of the

$$\begin{array}{rcl} \textit{evaluation map} & \textit{ev}_{0,1}: X^{[0,1]} & \rightarrow & X \times X & \textit{ev}_{0,1} \circ \textit{s} = \textit{id} \\ & \gamma & \mapsto & (\gamma(0), \gamma(1)) \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Motion planner

Let X be a nice topological space, say a manifold, a CW-complex.

 $s: X \times X \rightarrow X^{[0,1]} = \{\gamma : [0,1] \rightarrow X \text{ continuous}\}$

 $(\textit{A},\textit{B}) \hspace{.1in} \mapsto \hspace{.1in} \gamma \hspace{.1in} \text{such that} \hspace{.1in} \gamma(0) = \textit{A}, \hspace{.1in} \gamma(1) = \textit{B}$

In other words, it is a section $s: X \times X \to X^{[0,1]}$ of the

$$\begin{array}{rcl} \textit{evaluation map} & \textit{ev}_{0,1}: X^{[0,1]} & \rightarrow & X \times X & \textit{ev}_{0,1} \circ \textit{s} = \textit{id} \\ & \gamma & \mapsto & (\gamma(0), \gamma(1)) \end{array}$$

Such a section always exists when X is path-connected but is not continuous in general.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

 $X = S^1 = \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1 \}$

$$s(A,B) = \begin{cases} \text{ shortest path if } B \neq -A \\ \text{ counterclockwise meridian if } B = -A \end{cases}$$

$$X = S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$$

 $s(A,B) = \begin{cases} \text{shortest path if } B \neq -A \\ \text{meridian given by } V(A) \text{ if } B = -A \text{ and } A \notin \{N,S\} \\ \text{a preferred meridian if } (A,B) = (N,S) \text{ or } (S,N) \end{cases}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

TC- Topological Complexity

TC= minimal number of continuous local sections -1

TC- Topological Complexity

TC= minimal number of continuous local sections -1

Definition. (Farber, 2003) Suppose X is path-connected. TC(X) is the least *n* such that

$$X \times X = F_0 \cup \ldots \cup F_n$$

- para $i \neq j, F_i \cap F_j = \emptyset$,
- ▶ $F_i \subset X \times X$ is nice (ENR Euclidian Neighborhood Retract),

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• on each F_i there exists a **continuous** local section of $ev_{0,1}: X^{[0,1]} \to X \times X$

Equivalently: TC(X) is the least *n* such that

$$X \times X = U_0 \cup \ldots \cup U_n$$

where each U_i is an **open set** with a local continuous section of $ev_{0,1}$.

• TC is a homotopy invariant:

٠

If $X \simeq Y$ then TC(X) = TC(Y).

• TC(X) = 0 if and only if X is contractible $(X \simeq *)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

TC of the spheres

As seen before: $TC(S^1) \leq 1$ and $TC(S^2) \leq 2$.

TC of the spheres

As seen before: $TC(S^1) \leq 1$ and $TC(S^2) \leq 2$.

Theorem. (Farber, 2003) For $n \ge 1$

$$\mathrm{TC}(S^{2n-1}) = 1 \qquad \mathrm{TC}(S^{2n}) = 2.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

TC of the spheres

As seen before: $TC(S^1) \leq 1$ and $TC(S^2) \leq 2$.

Theorem. (Farber, 2003) For $n \ge 1$

$$\mathrm{TC}(S^{2n-1}) = 1 \qquad \mathrm{TC}(S^{2n}) = 2.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem. (Grant, Lupton, Oprea) $\mathrm{TC}(X) = 1$ iff X is homotopically equivalent to S^{2n-1} .

Lusternik-Schnirelmann category

Definition. The Lusternik-Schnirelmann category of X, cat X, is the least integer n such that X can be covered by n + 1 open sets, each of which is contractible **in** X,

$$X = A_0 \cup ... \cup A_n$$
 $A_0, ..., A_n$ contractible in X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lusternik-Schnirelmann category

Definition. The Lusternik-Schnirelmann category of X, cat X, is the least integer n such that X can be covered by n + 1 open sets, each of which is contractible **in** X,

$$X = A_0 \cup ... \cup A_n$$
 $A_0, ..., A_n$ contractible in X.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Lusternik-Schnirelmann category

Definition. The Lusternik-Schnirelmann category of X, cat X, is the least integer n such that X can be covered by n + 1 open sets, each of which is contractible **in** X,

$$X = A_0 \cup ... \cup A_n$$
 $A_0, ..., A_n$ contractible in X.

- cat is a homotopy invariant
- cat(X) = 0 iff $X \simeq *$ and $cat(S^n) = 1$ for any $n \ge 1$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

• $cat(X) \leq dim(X)$

Theorem. (Farber + classical results)

 $\operatorname{cat}(X) \leq \operatorname{TC}(X) \leq \operatorname{cat}(X \times X) \leq 2\operatorname{cat}(X) \leq 2\operatorname{dim}(X).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へぐ

Theorem. (Farber + classical results)

 $\operatorname{cat}(X) \leq \operatorname{TC}(X) \leq \operatorname{cat}(X \times X) \leq 2\operatorname{cat}(X) \leq 2\operatorname{dim}(X).$

We say that TC(X) is **maximal** when

 $\mathrm{TC}(X) = 2\dim(X).$

(日)

Theorem. (Farber + classical results)

 $\operatorname{cat}(X) \leq \operatorname{TC}(X) \leq \operatorname{cat}(X \times X) \leq 2\operatorname{cat}(X) \leq 2\operatorname{dim}(X).$

We say that TC(X) is **maximal** when

 $\mathrm{TC}(X) = 2\dim(X).$

This only can happen when $\pi_1(X) \neq 0$ because

$$\pi_1(X) = 0 \Rightarrow \operatorname{cat}(X) \leqslant \frac{\dim X}{2}$$
 and $\operatorname{TC}(X) \leqslant \dim(X)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Surfaces (compact, connected, without boundary)

Orientable surfaces

 S^2 $T = S^1 \times S^1$

torus with g holes $T_g = \underbrace{T \# T \# \cdots \# T}_g$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Surfaces (compact, connected, without boundary)

Orientable surfaces

 $S^2 \quad T = S^1 \times S^1$

torus with g holes $T_g = \underbrace{T \# T \# \cdots \# T}_g$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem. (Farber, 2003)

- $TC(S^2) = 2$
- TC(T) = 2
- for $g \ge 2$, $\operatorname{TC}(T_g) = 4$.

$$\mathcal{K} = \mathbb{RP}^2 \# \mathbb{RP}^2, \qquad \mathcal{N}_g = \underbrace{\mathbb{RP}^2 \# \cdots \# \mathbb{RP}^2}_{g}$$

Theorem.(Farber, Tabachnikov, Yuzvinsky, 2003) $TC(\mathbb{RP}^2) = 3$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

$$\mathcal{K} = \mathbb{RP}^2 \# \mathbb{RP}^2, \qquad \mathcal{N}_g = \underbrace{\mathbb{RP}^2 \# \cdots \# \mathbb{RP}^2}_{g}$$

Theorem.(Farber, Tabachnikov, Yuzvinsky, 2003) $TC(\mathbb{RP}^2) = 3$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Theorem.(Dranishnikov, 2016) For $g \ge 4$, $TC(N_g) = 4$.

$$\mathcal{K} = \mathbb{RP}^2 \# \mathbb{RP}^2, \qquad \mathcal{N}_g = \underbrace{\mathbb{RP}^2 \# \cdots \# \mathbb{RP}^2}_{g}$$

Theorem.(Farber, Tabachnikov, Yuzvinsky, 2003) $\mathrm{TC}(\mathbb{RP}^2) = 3$

Theorem.(Dranishnikov, 2016) For $g \ge 4$, $TC(N_g) = 4$.

Theorem.(Cohen, V, 2017) TC(K) = 4. For $g \ge 2$, $TC(N_g) = 4$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Connected sums of \mathbb{RP}^n

In analogy to $N_g = \mathbb{RP}^2 \# \cdots \# \mathbb{RP}^2$ (g copies), we consider

$$\mathcal{P}_g^n := \underbrace{\mathbb{RP}^n \# \cdots \# \mathbb{RP}^n}_{g \text{ copies}}$$

Connected sums of \mathbb{RP}^n

In analogy to $N_g = \mathbb{RP}^2 \# \cdots \# \mathbb{RP}^2$ (g copies), we consider $\mathcal{P}_g^n := \underbrace{\mathbb{RP}^n \# \cdots \# \mathbb{RP}^n}_{g \text{ copies}}$

Theorem. (Cohen-V., 2018) For $n \ge 2$ and $g \ge 2$, $\operatorname{TC}(\mathcal{P}_g^n) = 2n$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Connected sums of \mathbb{RP}^n

In analogy to $N_g = \mathbb{RP}^2 \# \cdots \# \mathbb{RP}^2$ (g copies), we consider $\mathcal{P}_g^n := \underbrace{\mathbb{RP}^n \# \cdots \# \mathbb{RP}^n}_{g \text{ copies}}$

Theorem. (Cohen-V., 2018) For $n \ge 2$ and $g \ge 2$, $\operatorname{TC}(\mathcal{P}_g^n) = 2n$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Case $g = 1, \mathcal{P}_1^n = \mathbb{RP}^n$ (Farber, Tabachnikov, Yuzvinsky - 2003)

Connected sums of \mathbb{RP}^n

In analogy to $N_g = \mathbb{RP}^2 \# \cdots \# \mathbb{RP}^2$ (g copies), we consider $\mathcal{P}_g^n := \underbrace{\mathbb{RP}^n \# \cdots \# \mathbb{RP}^n}_{g \text{ copies}}$

Theorem. (Cohen-V., 2018) For $n \ge 2$ and $g \ge 2$, $\operatorname{TC}(\mathcal{P}_g^n) = 2n$.

Case $g = 1, \mathcal{P}_1^n = \mathbb{RP}^n$ (Farber, Tabachnikov, Yuzvinsky - 2003)

Theorem. (FTY) For n = 1, 3 or 7, $TC(\mathbb{RP}^n) = n$.

For $n \neq 1, 3, 7$, $TC(\mathbb{RP}^n)$ is the least integer k such that there exists an immersion of \mathbb{RP}^n in \mathbb{R}^k .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Connected sums of \mathbb{RP}^n

In analogy to $N_g = \mathbb{RP}^2 \# \cdots \# \mathbb{RP}^2$ (g copies), we consider $\mathcal{P}_g^n := \underbrace{\mathbb{RP}^n \# \cdots \# \mathbb{RP}^n}_{g \text{ copies}}$

Theorem. (Cohen-V., 2018) For $n \ge 2$ and $g \ge 2$, $TC(\mathcal{P}_g^n) = 2n$.

Case $g = 1, \mathcal{P}_1^n = \mathbb{RP}^n$ (Farber, Tabachnikov, Yuzvinsky - 2003)

Theorem. (FTY) For n = 1, 3 or 7, $TC(\mathbb{RP}^n) = n$.

For $n \neq 1, 3, 7$, $TC(\mathbb{RP}^n)$ is the least integer k such that there exists an immersion of \mathbb{RP}^n in \mathbb{R}^k .

In particular, $TC(\mathbb{RP}^n) \leq 2n-1$.

Theorem. (Cohen-V., 2021) Let *M* be a *nonorientable* manifold with **abelian** fundamental group. Then $TC(M) \leq 2 \dim(M) - 1$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Theorem. (Cohen-V., 2021) Let M be a *nonorientable* manifold with **abelian** fundamental group. Then $TC(M) \leq 2 \dim(M) - 1$.

Theorem. (Cohen-V., 2021) Let M be an *n*-dimensional *orientable* manifold with **abelian** fundamental group $\pi_1(M)$ of one of the following forms:

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

1. \mathbb{Z}^r with either *n* odd or *n* even such that r < 2n

Theorem. (Cohen-V., 2021) Let M be a *nonorientable* manifold with **abelian** fundamental group. Then $TC(M) \leq 2 \dim(M) - 1$.

Theorem. (Cohen-V., 2021) Let M be an *n*-dimensional *orientable* manifold with **abelian** fundamental group $\pi_1(M)$ of one of the following forms:

- 1. \mathbb{Z}^r with either *n* odd or *n* even such that r < 2n
- 2. $\mathbb{Z}^r \times \mathbb{Z}_{p^a}$ with p prime and r < n

Theorem. (Cohen-V., 2021) Let M be a *nonorientable* manifold with **abelian** fundamental group. Then $TC(M) \leq 2 \dim(M) - 1$.

Theorem. (Cohen-V., 2021) Let M be an *n*-dimensional *orientable* manifold with **abelian** fundamental group $\pi_1(M)$ of one of the following forms:

- 1. \mathbb{Z}^r with either *n* odd or *n* even such that r < 2n
- 2. $\mathbb{Z}^r \times \mathbb{Z}_{p^a}$ with p prime and r < n

3. $\mathbb{Z}^r \times \mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b}$ and $r \leq 1$

Theorem. (Cohen-V., 2021) Let M be a *nonorientable* manifold with **abelian** fundamental group. Then $TC(M) \leq 2 \dim(M) - 1$.

Theorem. (Cohen-V., 2021) Let M be an *n*-dimensional *orientable* manifold with **abelian** fundamental group $\pi_1(M)$ of one of the following forms:

- 1. \mathbb{Z}^r with either *n* odd or *n* even such that r < 2n
- 2. $\mathbb{Z}^r \times \mathbb{Z}_{p^a}$ with p prime and r < n

3. $\mathbb{Z}^r \times \mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b}$ and $r \leq 1$

4. $\mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b} \times \mathbb{Z}_{p^c}$

Theorem. (Cohen-V., 2021) Let M be a *nonorientable* manifold with **abelian** fundamental group. Then $TC(M) \leq 2 \dim(M) - 1$.

Theorem. (Cohen-V., 2021) Let M be an *n*-dimensional *orientable* manifold with **abelian** fundamental group $\pi_1(M)$ of one of the following forms:

1. \mathbb{Z}^r with either *n* odd or *n* even such that r < 2n

2.
$$\mathbb{Z}^r \times \mathbb{Z}_{p^a}$$
 with p prime and $r < n$

- 3. $\mathbb{Z}^r \times \mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b}$ and $r \leq 1$
- 4. $\mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b} \times \mathbb{Z}_{p^c}$

5. $\mathbb{Z}^r \times (\mathbb{Z}_2)^s$ with either *n* odd or *n* even such that r < 2nThen $\mathrm{TC}(M) \leq 2\dim(M) - 1$.

• Cup-length of $H^*(X; \Bbbk)$

$$cl_{\Bbbk}(X) = \max\{n \mid a_{1} \cdots a_{n} \neq 0, a_{i} \in H^{>0}(X; \Bbbk)\}$$
$$cl_{\Bbbk}(X) \leqslant cat(X) \leqslant dim(X)$$
$$Ex: cl_{\Bbbk}(S^{1} \times S^{1}) = cat(S^{1} \times S^{1}) = 2.$$

• Cup-length of $H^*(X; \Bbbk)$

$$cl_{\Bbbk}(X) = \max\{n \mid a_{1} \cdots a_{n} \neq 0, a_{i} \in H^{>0}(X; \Bbbk)\}$$
$$cl_{\Bbbk}(X) \leq cat(X) \leq dim(X)$$
$$Ex: cl_{\Bbbk}(S^{1} \times S^{1}) = cat(S^{1} \times S^{1}) = 2.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

• (Farber) Zero divisor cup-length of $H^*(X; \Bbbk)$

• Cup-length of $H^*(X; \Bbbk)$

$$cl_{\Bbbk}(X) = \max\{n \mid a_{1} \cdots a_{n} \neq 0, a_{i} \in H^{>0}(X; \Bbbk)\}$$
$$cl_{\Bbbk}(X) \leqslant cat(X) \leqslant dim(X)$$
$$Ex: cl_{\Bbbk}(S^{1} \times S^{1}) = cat(S^{1} \times S^{1}) = 2.$$

(Farber) Zero divisor cup-length of H*(X; k)
 zero divisor: element of the ker of H*(X)⊗H*(X) → H*(X)

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

• Cup-length of $H^*(X; \Bbbk)$

$$cl_{\Bbbk}(X) = \max\{n \mid a_{1} \cdots a_{n} \neq 0, a_{i} \in H^{>0}(X; \Bbbk)\}$$
$$\boxed{cl_{\Bbbk}(X) \leqslant cat(X) \leqslant dim(X)}$$
$$Ex: cl_{\Bbbk}(S^{1} \times S^{1}) = cat(S^{1} \times S^{1}) = 2.$$

(Farber) Zero divisor cup-length of H*(X; k)
 zero divisor: element of the ker of H*(X)⊗H*(X) → H*(X)

$$\operatorname{zcl}_{\Bbbk}(X) = \max\{n \mid z_1 \cdots z_n \neq 0, z_i \text{ zero divisor}\}$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Theorem. (Farber) $\operatorname{zcl}_{\Bbbk}(X) \leq \operatorname{TC}(X)$

$$\left[\begin{array}{c} \operatorname{cat}(X) \\ \operatorname{zcl}_{\Bbbk}(X) \end{array} \right] \leqslant \operatorname{TC}(X) \leqslant 2 \operatorname{cat}(X) \leqslant 2 \operatorname{dim}(X)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\left[\begin{array}{c} \operatorname{cat}(X) \\ \operatorname{zcl}_{\Bbbk}(X) \end{array} \right] \leqslant \operatorname{TC}(X) \leqslant 2 \operatorname{cat}(X) \leqslant 2 \operatorname{dim}(X)$$

Example (Farber, 2003) $TC(S^n) = 2$ if *n* is even.

$$\left. \begin{array}{c} \operatorname{cat}(X) \\ \operatorname{zcl}_{\Bbbk}(X) \end{array} \right\} \leqslant \operatorname{TC}(X) \leqslant 2 \operatorname{cat}(X) \leqslant 2 \operatorname{dim}(X)$$

Example (Farber, 2003) $TC(S^n) = 2$ if *n* is even.

•
$$\operatorname{cat}(S^n) = 1 \Longrightarrow 1 \leq \operatorname{TC}(S^n) \leq 2.$$

$$\left\{ \begin{array}{c} \operatorname{cat}(X) \\ \operatorname{zcl}_{\Bbbk}(X) \end{array} \right\} \leqslant \operatorname{TC}(X) \leqslant 2 \operatorname{cat}(X) \leqslant 2 \operatorname{dim}(X)$$

Example (Farber, 2003) $TC(S^n) = 2$ if *n* is even.

•
$$\operatorname{cat}(S^n) = 1 \Longrightarrow 1 \leq \operatorname{TC}(S^n) \leq 2.$$

▶ zero divisors:
$$\mathbb{Q}(x \otimes 1 - 1 \otimes x) \oplus \mathbb{Q} \cdot x \otimes x$$
 $x \in H^n(S^n; \mathbb{Q})$

$$\left\{ \begin{array}{c} \operatorname{cat}(X) \\ \operatorname{zcl}_{\Bbbk}(X) \end{array} \right\} \leqslant \operatorname{TC}(X) \leqslant 2 \operatorname{cat}(X) \leqslant 2 \operatorname{dim}(X)$$

Example (Farber, 2003) $TC(S^n) = 2$ if *n* is even.

- $\operatorname{cat}(S^n) = 1 \Longrightarrow 1 \leq \operatorname{TC}(S^n) \leq 2.$
- ▶ zero divisors: $\mathbb{Q}(x \otimes 1 1 \otimes x) \oplus \mathbb{Q} \cdot x \otimes x$ $x \in H^n(S^n; \mathbb{Q})$

• $(x \otimes 1 - 1 \otimes x)^2 = -x \otimes x - (-1)^n x \otimes x \neq 0$ if *n* is even.

$$\left\{ \begin{array}{c} \operatorname{cat}(X) \\ \operatorname{zcl}_{\Bbbk}(X) \end{array} \right\} \leqslant \operatorname{TC}(X) \leqslant 2 \operatorname{cat}(X) \leqslant 2 \operatorname{dim}(X)$$

Example (Farber, 2003) $TC(S^n) = 2$ if *n* is even.

- $\blacktriangleright \operatorname{cat}(S^n) = 1 \Longrightarrow 1 \leqslant \operatorname{TC}(S^n) \leqslant 2.$
- ► zero divisors: $\mathbb{Q}(x \otimes 1 1 \otimes x) \oplus \mathbb{Q} \cdot x \otimes x$ $x \in H^n(S^n; \mathbb{Q})$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

•
$$(x \otimes 1 - 1 \otimes x)^2 = -x \otimes x - (-1)^n x \otimes x \neq 0$$
 if *n* is even.

• Therefore $\operatorname{zcl}_{\mathbb{Q}}(S^n) = 2$ when *n* is even.

The calculation of zcl_{\Bbbk} (together with good upper bounds) has been sufficient for determining the value of TC in many cases including the orientable surfaces, \mathbb{RP}^2 ,...

For N_g , $g \ge 2$, the best we can say with this approach (taking $\Bbbk = \mathbb{Z}_2$) is

 $3 \leqslant \mathrm{TC}(N_g) \leqslant 4$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

• We have used a notion of zero-divisor with twisted coefficients, in particular the Costa-Farber class:

$$\mathfrak{v} \in H^1(X \times X; I(G))$$

where $G = \pi_1(X)$, $I(G) = \{\sum n_i g_i \mid \sum n_i = 0\} \subset \mathbb{Z}[G]$ given with an action of $G \times G$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

• We have used a notion of zero-divisor with twisted coefficients, in particular the Costa-Farber class:

$$\mathfrak{v} \in H^1(X \times X; I(G))$$

where $G = \pi_1(X)$, $I(G) = \{\sum n_i g_i \mid \sum n_i = 0\} \subset \mathbb{Z}[G]$ given with an action of $G \times G$.

• Using the bar resolution associated to a group (and many calculations) we proved that $v^4 \neq 0$ when $X = N_g$ with $g \ge 2$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• We have used a notion of zero-divisor with twisted coefficients, in particular the Costa-Farber class:

$$\mathfrak{v} \in H^1(X \times X; I(G))$$

where $G = \pi_1(X)$, $I(G) = \{\sum n_i g_i \mid \sum n_i = 0\} \subset \mathbb{Z}[G]$ given with an action of $G \times G$.

• Using the bar resolution associated to a group (and many calculations) we proved that $v^4 \neq 0$ when $X = N_g$ with $g \ge 2$.

Theorem (Costa-Farber, 2010) Suppose that $\dim(X) = n \ge 2$.

•
$$\operatorname{TC}(X) = 2n \iff \mathfrak{v}^{2n} \neq 0.$$

• We have used a notion of zero-divisor with twisted coefficients, in particular the Costa-Farber class:

$$\mathfrak{v} \in H^1(X \times X; I(G))$$

where $G = \pi_1(X)$, $I(G) = \{\sum n_i g_i \mid \sum n_i = 0\} \subset \mathbb{Z}[G]$ given with an action of $G \times G$.

• Using the bar resolution associated to a group (and many calculations) we proved that $v^4 \neq 0$ when $X = N_g$ with $g \ge 2$.

Theorem (Costa-Farber, 2010) Suppose that $dim(X) = n \ge 2$.

TC(X) =
$$2n \iff \mathfrak{v}^{2n} \neq 0$$
.

• If $G = \mathbb{Z}_2$ then $v^{2n} = 0$ and $TC(X) \leq 2n - 1$.

Proposition. If $\pi_1(M) = G$ is abelian then

$$\operatorname{TC}(M) < 2n \Leftrightarrow \alpha_*(\mathsf{m} \times \mathsf{m}) = 0 \text{ in } H_{2n}(BG; \widetilde{\mathbb{Z}}).$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Proposition. If $\pi_1(M) = G$ is abelian then

$$\operatorname{TC}(M) < 2n \Leftrightarrow \alpha_*(\mathsf{m} \times \mathsf{m}) = 0 \quad \text{in } H_{2n}(BG; \widetilde{\mathbb{Z}}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

• α_* is induced by $G \times G \rightarrow G$, $\alpha(a, b) = ab^{-1}$

Proposition. If $\pi_1(M) = G$ is abelian then

$$\operatorname{TC}(M) < 2n \Leftrightarrow \alpha_*(\mathsf{m} \times \mathsf{m}) = 0 \quad \text{in } H_{2n}(BG; \widetilde{\mathbb{Z}}).$$

•
$$\alpha_*$$
 is induced by $G \times G \rightarrow G$, $\alpha(a, b) = ab^{-1}$

•
$$\mathbf{m} = \gamma_*([M]) \in H_n(BG; \widetilde{\mathbb{Z}})$$
 where:

•
$$\gamma: M \to BG$$
 is a map s.t $\pi_1(\gamma): \pi_1(M) \xrightarrow{\cong} \pi_1(BG) = G$.

Proposition. If $\pi_1(M) = G$ is abelian then

$$\operatorname{TC}(M) < 2n \Leftrightarrow \alpha_*(\mathsf{m} \times \mathsf{m}) = 0 \quad \text{in } H_{2n}(BG; \widetilde{\mathbb{Z}}).$$

• α_* is induced by $G \times G \rightarrow G$, $\alpha(a, b) = ab^{-1}$

•
$$\mathbf{m} = \gamma_*([M]) \in H_n(BG; \widetilde{\mathbb{Z}})$$
 where:

- $\gamma: M \to BG$ is a map s.t $\pi_1(\gamma): \pi_1(M) \stackrel{\cong}{\to} \pi_1(BG) = G.$
- ▶ $\widetilde{\mathbb{Z}}$: \mathbb{Z} with the action of *G* given by the orientation character $w: G = \pi_1(M) \rightarrow \{\pm 1\}.$

• $[M] \in H_n(M; \widetilde{\mathbb{Z}}) \cong \mathbb{Z}$ is the (twisted) fundamental class of M.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うへぐ

Study of $\alpha_*(c \times c)$ for $c \in H_n(BG; \widetilde{\mathbb{Z}})$

G finitely generated abelian group with action on \mathbb{Z} . $H_*(BG; \mathbb{Z})$ is a Pontrjagin algebra with a strictly anti-commutative product \wedge

 $\mathsf{c} \wedge \mathsf{d} = (-1)^{|\mathsf{c}||\mathsf{d}|} \mathsf{d} \wedge \mathsf{c} \quad \text{with } \mathsf{c} \wedge \mathsf{c} = 0 \text{ when } |\mathsf{c}| \text{ is odd}.$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Study of $\alpha_*(c \times c)$ for $c \in H_n(BG; \widetilde{\mathbb{Z}})$

G finitely generated abelian group with action on \mathbb{Z} . $H_*(BG; \mathbb{Z})$ is a Pontrjagin algebra with a strictly anti-commutative product \wedge

$$c \wedge d = (-1)^{|c||d|} d \wedge c$$
 with $c \wedge c = 0$ when $|c|$ is odd.

Considering the morphism induced by the inversion of G

$$I: H_*(BG; \widetilde{\mathbb{Z}}) \to H_*(BG; \widetilde{\mathbb{Z}})$$

we have

$$\alpha_*(\mathsf{c}\times\mathsf{c})=\mathsf{c}\wedge I(\mathsf{c}).$$

If $I(c) = \pm c$ and |c| is odd then $\alpha_*(c \times c) = \pm c \wedge c = 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• the action of G on $\widetilde{\mathbb{Z}}$ is not trivial

- the action of G on $\widetilde{\mathbb{Z}}$ is not trivial
- the action of G on $\widetilde{\mathbb{Z}}$ is trivial and G is of one of the following forms.
 - 1. \mathbb{Z}^r with either *n* odd or *n* even such that r < 2n
 - 2. $\mathbb{Z}^r \times \mathbb{Z}_{p^a}$ with p prime and r < n
 - 3. $\mathbb{Z}^r \times \mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b}$ with p with $r \leq 1$
 - 4. $\mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b} \times \mathbb{Z}_{p^c}$
 - 5. $\mathbb{Z}^r \times (\mathbb{Z}_2)^s$ with either *n* odd or *n* even such that r < 2n

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

- the action of G on $\widetilde{\mathbb{Z}}$ is not trivial
- the action of G on $\widetilde{\mathbb{Z}}$ is trivial and G is of one of the following forms.
 - 1. \mathbb{Z}^r with either *n* odd or *n* even such that r < 2n
 - 2. $\mathbb{Z}^r \times \mathbb{Z}_{p^a}$ with p prime and r < n
 - 3. $\mathbb{Z}^r \times \mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b}$ with p with $r \leq 1$
 - 4. $\mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b} \times \mathbb{Z}_{p^c}$
 - 5. $\mathbb{Z}^r \times (\mathbb{Z}_2)^s$ with either *n* odd or *n* even such that r < 2n

All the conditions are sharp. In (2) r < n is sharp because for $G = \mathbb{Z}^7 \times \mathbb{Z}_3$, there exists $c \in H_7(BG; \mathbb{Z})$ such that $\alpha_*(c \times c) \neq 0$.

- the action of G on $\widetilde{\mathbb{Z}}$ is not trivial
- the action of G on Z̃ is trivial and G is of one of the following forms.
 - 1. \mathbb{Z}^r with either *n* odd or *n* even such that r < 2n
 - 2. $\mathbb{Z}^r \times \mathbb{Z}_{p^a}$ with p prime and r < n
 - 3. $\mathbb{Z}^r \times \mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b}$ with p with $r \leqslant 1$

4.
$$\mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b} \times \mathbb{Z}_{p^c}$$

5. $\mathbb{Z}^r \times (\mathbb{Z}_2)^s$ with either *n* odd or *n* even such that r < 2n

All the conditions are sharp. In (2) r < n is sharp because for $G = \mathbb{Z}^7 \times \mathbb{Z}_3$, there exists $c \in H_7(BG; \widetilde{\mathbb{Z}})$ such that $\alpha_*(c \times c) \neq 0$.

By using surgery, we realize this class as $c = \gamma_*([M])$ where

$$M$$
 mfld, $\gamma: M \to BG$ s.t. $\pi_1(\gamma)$ iso.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- the action of G on $\widetilde{\mathbb{Z}}$ is not trivial
- the action of G on $\widetilde{\mathbb{Z}}$ is trivial and G is of one of the following forms.
 - 1. \mathbb{Z}^r with either *n* odd or *n* even such that r < 2n
 - 2. $\mathbb{Z}^r \times \mathbb{Z}_{p^a}$ with p prime and r < n
 - 3. $\mathbb{Z}^r \times \mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b}$ with p with $r \leqslant 1$

4.
$$\mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b} \times \mathbb{Z}_{p^c}$$

5. $\mathbb{Z}^r \times (\mathbb{Z}_2)^s$ with either *n* odd or *n* even such that r < 2n

All the conditions are sharp. In (2) r < n is sharp because for $G = \mathbb{Z}^7 \times \mathbb{Z}_3$, there exists $c \in H_7(BG; \widetilde{\mathbb{Z}})$ such that $\alpha_*(c \times c) \neq 0$.

By using surgery, we realize this class as $c = \gamma_*([M])$ where

$$M$$
 mfld, $\gamma: M \to BG$ s.t. $\pi_1(\gamma)$ iso.

We get a mfld M with $\pi_1(M) = \mathbb{Z}^7 \times \mathbb{Z}_3$ and $\operatorname{TC}(M) = 2 \dim M$.