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Configuration space of the system

Space X of all the possible positions of the system

» Previous examples:

X=full square, X=full square with a hole.

» System=robotic arm with fixed origin

in the plane R?: X =circle X =5
in the space R3: X =sphere X =82
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» System=articulated arm with two axis and fixed origin

-

X = product of 2 circles X =S5'xst



» System=articulated arm with two axis and fixed origin

-

X = product of 2 circles X =S5'xst
» System= bar revolving about its center (in R3)

X = RP? = projective plane = {lines of R3 through 6}



Motion planner

Let X be a nice topological space, say a manifold, a CW-complex.

s: X xX — XOU={y:]0,1] - X continuous}

(A,B) — ~ suchthaty(0) = A, (1) =B

In other words, it is a section s : X x X — X[0.1] of the

evaluation map evg : xo o xxX ev,105 = id
v = (7(0),7(1))



Motion planner

Let X be a nice topological space, say a manifold, a CW-complex.

‘X x X — XU =1{y:[0,1] - X continuous}

(A,B) — ~ suchthaty(0) = A, (1) =B

In other words, it is a section s : X x X — X[0.1] of the

evaluation map evg : xo o xxX ev,105 = id
v = (7(0),7(1))

Such a section always exists when X is path-connected but is not
continuous in general.



v=(=y,x)

A= (va)

shortest path if B # —A
counterclockwise meridian if B = —A



S2={(x,y,2)eR3 : x2+y?+ 22 =1}

V(X,y,Z) = (—y,X,O)

S

meridian given by V(A) if B=—Aand A¢ {N,S}

shortest path if B # —A
S(A’ B) -
a preferred meridian if (A,B) = (N, S) or (S, N)
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TC- Topological Complexity

‘ TC= minimal number of continuous local sections —1 ‘

Definition. (Farber, 2003) Suppose X is path-connected. TC(X)
is the least n such that

XxX=Fu..uF,

»parai # j, Fin Fj =,
» Fi < X x X is nice (ENR - Euclidian Neighborhood Retract),

» on each F; there exists a continuous local section of
evpq : X0 — X x X



Equivalently: TC(X) is the least n such that
XxX=Uu..uU,

where each U; is an open set with a local continuous section of
€Vo,1-

» TC is a homotopy invariant:

If X ~ Y then TC(X) = TC(Y).

» TC(X) = 0 if and only if X is contractible (X =~ x).
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TC of the spheres

As seen before: TC(S') <1 and TC(S?) < 2.
Theorem. (Farber, 2003) For n > 1

TC(S*" =1 TC(S?") =2.

Theorem. (Grant, Lupton, Oprea)

TC(X) = 1 iff X is homotopically equivalent to $2™ 1,



Lusternik-Schnirelmann category

Definition. The Lusternik-Schnirelmann category of X, catX, is
the least integer n such that X can be covered by n + 1 open sets,
each of which is contractible in X,

X=Ayu..UA, Ao, ..., A, contractible in X.
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Lusternik-Schnirelmann category

Definition. The Lusternik-Schnirelmann category of X, catX, is
the least integer n such that X can be covered by n + 1 open sets,
each of which is contractible in X,

X=Ayu..UA, Ao, ..., A, contractible in X.

“«

> cat is a homotopy invariant
» cat(X) = 0 iff X ~ « and cat(5") =1 forany n>1
» cat(X) < dim(X)
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Theorem. (Farber + classical results)
cat(X) < TC(X) < cat(X x X) < 2cat(X) < 2dim(X).
We say that TC(X) is maximal when
TC(X) = 2dim(X).

This only can happen when 71 (X) # 0 because

dim X
m1(X) =0 = cat(X) < all

and TC(X) < dim(X).
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Orientable surfaces
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Surfaces (compact, connected, without boundary)

Orientable surfaces

=, ——— ’_____/. - ] . '__‘_
l.-/./ \ |/-=:::v\# /'__—_'/ — ‘-ci_—._
@ — b

2 T=6'xst torus with g holes Ty = T#HT# - #T.
—_—

g

Theorem. (Farber, 2003)
» TC(S?) =2
» TC(T) =
» for g > 2, TC( g) =4



Nonorientable surfaces: RP?, Klein bottle K, ...

K = RP?#RP?, Ny = RP?# - .. #RP?
———

g
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Nonorientable surfaces: RP?, Klein bottle K, ...

K = RP?#RP?, N, = RP?4 ... #RP?
—_————
g
Theorem.(Farber, Tabachnikov, Yuzvinsky, 2003) TC(RP?) = 3

Theorem.(Dranishnikov, 2016) For g > 4, TC(N,) = 4.

Theorem.(Cohen, V, 2017) TC(K) = 4. For g > 2, TC(N,) = 4.
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In analogy to Ny = RP?# ... #RP? (g copies), we consider

Pl = RP"# - - #RP”
| L —

g copies

Theorem. (Cohen-V., 2018) For n > 2 and g > 2, TC(Pg) =
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Connected sums of RIP”

In analogy to Ny = RP?# ... #RP? (g copies), we consider
P2 = RP"4 ... #RP"
g copies
Theorem. (Cohen-V., 2018) For n > 2 and g > 2, TC(Pg) = 2n.
Case g = 1,P{ = RP" (Farber, Tabachnikov, Yuzvinsky - 2003)
Theorem. (FTY) For n=1,3 or 7, TC(RP") = n

For n# 1,3,7, TC(RP") is the least integer k such that there
exists an immersion of RP” in R

In particular, TC(RP") < 2n — 1.
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Theorem. (Farber, Costa, 2010) Let M be a manifold with
fundamental group w1 (M) = Zj. Then TC(M) < 2dim(M) — 1.

Theorem. (Cohen-V., 2021) Let M be a nonorientable manifold
with abelian fundamental group. Then TC(M) < 2dim(M) — 1.

Theorem. (Cohen-V., 2021) Let M be an n-dimensional
orientable manifold with abelian fundamental group 71 (M) of one
of the following forms:

1. Z" with either n odd or n even such that r < 2n
2. " x Zps with p prime and r < n
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Theorem. (Farber, Costa, 2010) Let M be a manifold with
fundamental group w1 (M) = Zj. Then TC(M) < 2dim(M) — 1.

Theorem. (Cohen-V., 2021) Let M be a nonorientable manifold
with abelian fundamental group. Then TC(M) < 2dim(M) — 1.

Theorem. (Cohen-V., 2021) Let M be an n-dimensional
orientable manifold with abelian fundamental group 71 (M) of one
of the following forms:

1. Z" with either n odd or n even such that r < 2n
2. " x Zps with p prime and r < n
3. Z" X ZLpa x Lpp and r <1
4. Lpa X Lipp X Lpe
5. Z" x (Zy)* with either n odd or n even such that r < 2n
Then TC(M) < 2dim(M) — 1.
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Cohomological lower bounds

» Cup-length of H*(X;k)

clg(X) = max{n| a;---a, #0,a; € H”°(X;k)}

|cli(X) < cat(X) < dim(X)]

Ex: clg(St x St) = cat(St x St) = 2.
» (Farber) Zero divisor cup-length of H*(X;k)
zero divisor: element of the ker of H*(X)Q@H*(X) — H*(X)

zclg(X) = max{n | z; - - - z, # 0, z; zero divisor}

Theorem. (Farber) zclx(X) < TC(X)
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Cohomological lower bounds

cat(X)

2l (X) } < TC(X) < 2cat(X) < 2dim(X)

Example (Farber, 2003) TC(S") = 2 if n is even.

» cat(S§") =1= 1< TC(S") < 2.
» zero divisors: Q(x®1—-1®x)PQ-x® x xe H"(S8™";Q)
» (x®1-1®x)%2 = —x®x — (—1)"x® x # 0 if n is even.

» Therefore zclg(S") = 2 when n is even.



The calculation of zcly (together with good upper bounds) has
been sufficient for determining the value of TC in many cases
including the orientable surfaces, RP? ...

For Ng, g > 2, the best we can say with this approach (taking
k = Zz) is
3<TC(Ng) <4



For proving TC(N,) = 4, g = 2

= We have used a notion of zero-divisor with twisted
coefficients, in particular the Costa-Farber class:

ve HY(X x X;1(G))

where G = m1(X), I(G) = {3 nigi | 2, ni =0} < Z[G] given
with an action of G x G.
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For proving TC(N,) = 4, g = 2

= We have used a notion of zero-divisor with twisted
coefficients, in particular the Costa-Farber class:

ve HY(X x X;1(G))

where G = m1(X), I(G) = {3 nigi | 2, ni =0} < Z[G] given
with an action of G x G.

= Using the bar resolution associated to a group (and many
calculations) we proved that v* # 0 when X = N, with g > 2.

Theorem (Costa-Farber, 2010) Suppose that dim(X) = n > 2.
» TC(X) = 2n < 12" # 0.
» If G = 7 then 12" = 0 and TC(X) <2n— 1.



M closed manifold with dim M = n and m (M) = G

Proposition. If m1(M) = G is abelian then

TC(M) < 2n < ax(m xm) =0 in Hay(BG;Z).



M closed manifold with dim M = n and m (M) = G

Proposition. If m1(M) = G is abelian then

TC(M) < 2n < ax(m xm) =0 in Hay(BG;Z).

» a, isinducedby G xG— G, afab)=ab!



M closed manifold with dim M = n and m (M) = G

Proposition. If m1(M) = G is abelian then

TC(M) < 2n < ax(m xm) =0 in Hay(BG;Z).

» a, isinducedby G xG— G, afab)=ab!
s m = 7 ([M]) € Hao(BG; Z) where:

> v:M— BGisamapstm(y):m(M)S 1 (BG) =G.



M closed manifold with dim M = n and m (M) = G

Proposition. If m1(M) = G is abelian then

TC(M) < 2n < ax(m xm) =0 in Hay(BG;Z).

» a, isinducedby G xG— G, afab)=ab!
s m = 7 ([M]) € Hao(BG; Z) where:

> v:M— BGisamapstm(y):m(M)S 1 (BG) =G.

» 7: 7 with the action of G given by the orientation character
w: G =m(M)— {£1}.

» [M] e Ho(M;Z) =~ Z is the (twisted) fundamental class of M.
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Study of . (c x ) for ¢ € Hn(BG; Z)

G finitely generated abelian group with action on Z.

H,(BG;Z) is a Pontrjagin algebra with a strictly anti-commutative
product A

cad=(=1)ld A ¢ with c A c =0 when || is odd.
Considering the morphism induced by the inversion of G
I : Hy(BG;Z) — H,(BG;Z)

we have
ax(cxc)=cnAlc).

If I(c) = +c and |c| is odd then a4 (c x ¢) = £c A c = 0.
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Proposition. For c € H,(BG;Z), we have a,(c x ¢) = 0 when

= the action of G on Z is not trivial

= the action of G on Z is trivial and G is of one of the following
forms.

1. Z" with either n odd or n even such that r < 2n

7" x Zps with p prime and r < n

L' X Zips X Ly with p with r <1

Lips X Lipp X Lipe

Z" x (Z3)® with either n odd or n even such that r < 2n

ok wN

All the conditions are sharp. In (2) r < n is sharp because for
G = 7" x Zs, there exists c € H;(BG;Z) such that ay(c x c) # 0.

By using surgery, we realize this class as ¢ = 7, ([M]) where
M mfld, ~: M — BG s.t. mi(7y) iso.

We get a mfld M with 71(M) = Z” x Z3 and TC(M) = 2dim M.



