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Abstract

This note is a part of a course given as a brief and elementary introduction to operads. We give an
overview of free operads and their construction on one hand, and the differential graded operad on the
other hand, we present afterward a proof of theorem giving their minimal model proved by Markl in [4].

1 Free Operads

1.1 Functorial definition of operads[1],[3]:

Recall the fonctorial definition of operads as presented for example in [1] and [3], one can work firstly in
the category of vector spaces, denoted Vect, an operad is a monad in the category Vect, i.e. a monoid
in the category End(Vect), (with monoidal structure ◦). More precisely, an operad P is an object in
End(Vect), i.e. a functor P : Vect → Vect together with two maps γ : P → P and i : I → P, which are
natural transformations, satisfying associativity and unity requirements given by the following commutative
diagrams:

P ◦ (P ◦ P)

id⊗γ
��

γ⊗id
// P ◦ P

γ

��

P ◦ P
γ

// P

and I ◦ P

'
$$

i⊗id
// P ◦ P

ϕ̃

��

P ◦ Iid⊗i
oo

'
zz

P.
Note that, for two endofunctors P,Q ∈ End(Vect) the composition ◦ is obviously defined by

P ◦ Q(V ) = P(Q(V )) and P ◦ Q(`) = P(Q(`)).

for any vector space V and any linear map `. It is also possible to define additional operations on
endofunctors in Vect, namely the tensor product and the direct sum, by

(P ⊗Q)(V ) = P(V )⊗Q(V ) and (P ⊗Q)(`) = P(`)⊗Q(`),

respectively
(P ⊕Q)(V ) = P(V )⊕Q(V ) and (P ⊕Q)(`) = P(`)⊕Q(`),

for any vector space V and any linear map `.

1.2 S−modules

Definition 1.1. An S−module P is a sequence (Pn)n∈N of vector spaces endowed with right Σn−module
structure.

∗Email:h.yamoul@gmail.com
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In view of the classical definition, operads are defined by means of S−modules. To an S−module P, we
can associate an endofunctor P̃ : Vect→ Vect, called Schur functor, by

P̃(V ) =
⊕
n∈N
Pn ⊗Σn

V ⊗n

and

P̃(`) =
⊕
n∈N

id⊗Σn
`⊗n : P̃(V )→ P̃(W ),

for any vector space V and any linear map ` : V →W.
Particular case: The tensor algebras can be seen as Schur functor applied to P as I, the identity, and we

have TV =
⊕

n∈N V
⊗n

A Schur functor is thus a special kind of endofunctor in Vect, thus defines an operad in view of the
previously given functorial definition. In the following, we would like to limit ourselves to operads given by
Schur functors. Showing that Schur functors are in one-to-one correspondence with S−modules will then
allow us to use the functorial and the classical definition of operads in an equivalent manner. In particular,
the identification of S-modules and Schur functors should respect the operations ◦, ⊕ and ⊗. Therefore, we
first have to define these operations for S−modules. The direct sum of two S−modules P and Q is defined
by

(P ⊕Q)(n) = P(n)⊕Q(n),

concerning vector spaces, and by (µ ⊕ ν).λ, concerning the Σn−action. From this definition, it follows
that

P̃ ⊕ Q = P̃ ⊕ Q̃.

The tensor product of two S−modules P and Q is defined by

(P ⊗Q)(n) =
⊕
i+j=n

IndΣn

Σi×Σj
Pi ⊗Qj ,

which is a right Σn−module. It can be shown that from this definition, it follows that

P̃ ⊗ Q = P̃ ⊗ Q̃.

Remark:

(P ⊗Q)(n) =
⊕
i+j=n

Pi ⊗QjK(Σn/Σi × Σj) =
⊕
i+j=n

Pi ⊗QjK[(Sh(i, j)],

as vector space, where Sh(i, j) denotes the space of (i, j)−shuffles, i.e. permutations of i+j = n elements,
where the first i and the last j elements are respectively in natural order, i.e. permutations σ ∈ Σn with
σ1 < ...σi and σi+1 < ... < σn.

The composite of two S−modules P and Q is defined by

(P ⊗Q)(n) =
⊕
k∈N
Pk ⊗ ΣkQ⊗k(n)

=
⊕
k∈N
Pk ⊗Σk

(
⊕

i1+...+ik=n

IndΣn

Σi1×...×Σik
Q(i1)⊗ ...⊗Q(ik))

This is a right Σn−module if Q⊗k carries left Σk−module structure which is compatible with the right
Σn−module structure.

More generally, we get
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(P ◦ Q)(n) =
⊕
k∈N

i1+...+ik=n

Pk ⊗Σk
(Q(i1)⊗ ...⊗Q(ik))⊗K[Sh(i1, ...ik)].

This space is spanned by equivalence classes (for the Σk−action) of elements (µ; ν1, ..., νk;σ) where
µ ∈ P(k), νj ∈ Q(ij) and σ ∈ K[Sh(i1, ...ik)].

The left Σk−module structure on Q⊗k(n) is explained by the following example. Consider the case k = 2,
and let τ ∈ Σ2 be the transposition, then the action of τ on

Q⊗2(n) =
⊕
i+j=n

Q(i)⊗Q(j)⊗K[Sh(i, j)]

is given by
τ.(ν1, ν2, σ) = (ν2, ν1, σ

′),

where

σ′ = σ ◦
(

1 · · · j j + 1 · · · i+ j
i+ 1 · · · i+ j 1 · · · i

)
.

Indeed, for instance, if i = 3, j = 2 and σ =

(
1 2 3 4 5
2 3 5 1 4

)
, then σ′=σ ◦

(
1 2 3 4 5
4 5 1 2 3

)
.

Hence, roughly, the Σk−action on Q⊗k(n) is given by the action on Q(i1)⊗ ...⊗Q(ik) and by changing the
shuffle appropriately.

It can be shown that from this definition, it follows that P̃ ◦ Q = P̃ ◦ Q̃.
Remark: Operads are abstractions of algebras, however, not all results can be transferred from the

algebraic to the operadic setting. The tensor product, providing the monoidal structure on Vect is bilinear,
whereas the composition ◦, providing the monoidal structure on End(Vect) is only linear in the left factor.
This is best seen in the above given formula for the composite of S−modules, and due to the fact that the
right factor Q appears multiple times in this composite. This weakened form of bilinearity will be the source
of several obstructions in the following.

An S-module morphism is a sequence of linear maps, commuting with the symmetric group action.
S−modules and S−module morphisms form a category S-Mod. This category is a monoidal category with
monoidal structure given by the composition ◦ and the unit S−module I = (0,K, 0, 0, ...).

As the map ∼: {S − modules} → {Schurfunctors}respects all operations, we can identify S-modules
and Schur functors, provided this map is injective. In order to proof injectivity, we need the following

Lemma 1.1. P(n) is the n−multilinear part of P̃(Kx1 ⊕ ...⊕Kxn).

Proof: The k−th tensor power admits a basis made up by elements of the form xi1 ...xik (where the tensor
product ⊗ is omitted). Multilinear means that all the xi−s are different and n−multilinear thus means that
we only consider basis elements of the form xσ1

...xσn
, σ ∈ Σn. The n−multilinear part M n(P) is finally given

by M n(P) = Pn ⊗Σn
kσxσ1

...xσn
. Consider now an element of the form θ ⊗ τ.(x1...xn) = (θ.τ)⊗ (x1...xn),

which can also be viewed as an element of P(k) ⊗ K(x1...xn), where the latter factor is a one-dimensional
vector space. Finally, we can identify the considered element with θ.τ ∈ P(n).

Injectivity now follows immediately. Indeed, if the two Schur functors ˜P̃ and P̃ are equal, they have to
coincide on every vector space, in particular ˜P̃(Kx1⊕ ...⊕Kxn) = Q̃(Kx1⊕ ...⊕Kxn) for any n, thus their
n−multilinear parts are equal, for any n. Finally, P(n) ' Q(n), for any n, i.e. P ' Q.

Remark : We will now confine ourselves to operads given by Schur functors. This allows to view an
operad either as an S−module or as a Schur functor, using the most convenient standpoint depending on the
situation. There is naturally a forgetful functor Op→ S-Mod from the category of Operads ans the category
of S−module, it has obviously an adjoint functor S-Mod→ Op.

It can be shown that the functorial definition of an operad is ‘equivalent’ to the classical definition. We
will only give a rough description how the classical structure of an operad can be obtained from the functorial
one in the nonsymmetric case.
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Using the S−module viewpoint, an operad P provides a sequence (P(n))n∈N of vector spaces. The
sequence of linear maps γn : (P ◦ P)(n)→ P(n), where

(P ◦ P)(n) =
⊕
k∈N

i1+...+ik=n

P(k)⊗ (P(i1)⊗ ...⊗ P(ik)),

gives rise to the composition maps γi1,...,ikP(k) ⊗ (P(i1) ⊗ ... ⊗ P(ik)) → P(n), whereas the sequence
of linear maps in : I(n) → P(n), where I(1) = K and I(n) = 0 for n 6= 1, giver rise to the identity
ι : K→ P(1), ι(1) =: 1P .

1.3 P−algebras

In the classical setting we considered P-algebras, which are representations of an operad P on a vector space,
i.e. a sequence of linear maps µn : P(n) ⊗Σn

V ⊗n → V that respects composition and identity. In the
functorial setting, we give, using the endofunctor standpoint, the following

Definition 1.2. A P−algebra is a vector space V together with a linear map γV : P → V, such that the
following diagrams commute:

P ◦ P(V ) = P(P(V ))

P(γ)

��

γ(V )
// P(V )

γV

��

P(V )
γ

// V

and

The classical and the functorial definition of a P−algebra coincide (if P is a Schur functor). Starting
from the functorial definition, we get that a P−algebra is a vector space V together with the linear map

γV : P(V ) =
⊕
n∈N
P(n)⊗Σn

V ⊗n → V, n ∈ N,

which is made up by a sequence of linear maps
γV,n : P(n)⊗Σn V

⊗n → V, n ∈ N,
that respects composition and identity, which is encoded in the commutative diagrams. Indeed, the

triangle diagram encodes that the abstract identity is sent to the concrete one. The square diagram encodes
that ‘the concrete map associated to abstract composition’ (in the upper and right parts of the diagram) and
‘composition of concrete maps’ (in the left and lower parts) coincide. Let us roughly explain what happens
in the ‘composition of concrete maps’. Since composition of Schur functors coincides with the Schur functor
associated to the composite of S−modules, we essentially have

(P ⊗ P)(V ) = P(k)⊗ Pi1 ⊗ ...⊗ Pik ⊗ V ⊗(i1+...+ik)

' P(k)⊗ (P(i1)⊗ V ⊗i1)⊗ ...⊗ (P(ik)⊗ V ⊗ik)

P(γV )=id⊗γ⊗k
V−→ P(k)⊗ V ⊗ ...⊗ V = P(k)⊗ V ⊗k γV→ V

where we omitted the direct sums in order to simplify notations.

Definition 1.3. Let (V, γV ) and (W,γW ) be two P−algebras. A P−algebra morphism ϕ : (V, γV )→ (W,γW )
is a linear map ϕ : V →W, such that the following diagram commutes:

P(V )

P(ϕ)

��

γV // P(V )

ϕ

��

P(W )
γW // W

P−algebras and P−algebra morphisms form a category P − Alg.
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Definition 1.4. The free P−algebra over a vector space V is the P−algebra F(V ) together with the linear
map i : V → F(V ), such that for any P−algebra A and any linear map ϕ : V → A, there exixts a unique
P−algebra morphism ϕ̃ : F(V )→ A such that ϕ = ϕ̃ ◦ i, i.e. the following diagram commutes:

V

ϕ
""

i // F(V )

ϕ̃

��

A.
If existence of the free P-algebra is proved, we get that F is a functor from Vect to P-Alg and that

i : V → F(V ) is functorial in V, since for any linear map ` : V → W, there exists a unique P-algebra
morphism F(`) : F(V )→ F(W ), such that the following diagram commutes:

V

`

��

iV // F(V )

F(`)

��

W
iW
// F(W ).

Existence of the free P-algebra is given by the following

Proposition 1.1. The free P−algebra over V is the vector space P(V ) =
⊕

n∈N P(n)⊗Σn
V ⊗n given by the

Schur functor P, endowed with the P−algebra structure γP(V ) : P(P(V )) → P(V ), given by the monoidal
composition γ(V ) : (P◦P)(V )→ P(V ), together with the linear map iV : V → P(V ), given by i(V )→ P(V ).

Remark : Operads are exactly what is needed to construct free algebras.

Example 1.1. There are two natural example that should be mentioned, the operads A and C
1. In view of the previous proposition, the Schur functor Ass applied to a vector space V should provide

the free associative nonunital algebra over V, which is the tensor algebra T (V ). This means that we should
have

A (V ) =
⊕
n∈N

A (n)⊗Σn
V ⊗n =

⊕
n∈N

V ⊗n = T (V ).

Recalling that the tensor product Σn is actually over K[Σn], we get that

A (n) = K[Σn],

for n ≥ 1 and A (0) = 0. Hence, we obtain the same result as previously.
2. The Schur functor C applied to a vector space V should provide the free commutative nonunital algebra

over V, which is the symmetric algebra S(V ). Note that

S(V ) =
⊕
n∈N∗

SnV =
⊕
n∈N∗

(V ⊗n)Σn
,

i.e. given by tensors which are invariant under the symmetric group action. This means that we should
have

C (V ) =
⊕
n∈N

C (n)⊗Σn
V ⊗n =

⊕
n∈N

SnV = S(V )

In view of the previously obtained form of C , we should obtain that K⊗Σn
V ⊗n = (V ⊗n)Σn

, where K is
the trivial representation. Indeed, elements of are of the form∑

k ⊗ (v1...vn) =
∑

k.σ ⊗ (v1...vn) =
∑

k ⊗ σ.(v1...vn) =
∑

k ⊗ (vσ−1
1
...vσ−1

n
),

which is also an element of (V ⊗n)Σn
, and vice versa. Hence, we have

C (n) = K,

for n ≥ 1 and C (0) = 0.
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1.4 Free operad

1.4.1 Construction of the free operad

As operads can be regarded as abstractions of algebras, we would like to define the free operad over an
S-module in a similar way as we defined the free associative algebra over a vector space. However, due to
the lack of linearity in the right factor of the composition of S−modules, this is not possible. Therefore,
we will define the free operad using a limiting procedure. As for any free object, the free operad over an
S−module M is defined by means of a universal property. Namely, as being the operad F(M) together
with the S−module morphism i : M → F(M), such that for any operad P and any S−module morphism
ϕ : MP, there exists a unique morphism of operads ϕ̃ : F(M) → P, such that ϕ = ϕ̃ ◦ i, i.e. such that the
following diagram commutes:

M

ϕ
""

i // F(M)

ϕ̃

��

P.
Equivalently, one can define the free operad functor S−Mod→Oper as being the left adjoint functor to

the forgetful functor Oper→ S−Mod.
In order to construct the free operad, we will view the S-module M as a Schur functor and define the

sequence of Schur functors (TnM)n∈N by

T0M = I

T1M = I ⊕M
T2M = I ⊕ (M◦)I ⊕M) = I ⊕ (M ◦T1M)

...

TnM = I ⊕ (M ◦Tn−1M)

Remark : In general, we cannot develop the above expressions, since the composition is only left-additive.
However, if it were biadditive, we could write TnM = I ⊕M ⊕M◦2 ⊕ ...⊕M◦n, which would then give the
operadic analogue of the tensor algebra, which is the free associative algebra.

Moreover, we recursively define a sequence in : Tn−1M → TnM of natural transformations by

i1 : T0M → T1M, I → I ⊕M

and

in : Tn−1M = I ⊕ (M ◦Tn−2M)→ TnM = I ⊕ (M ◦Tn−1M), in = idI ⊕ (idM ◦ in−1).

Note that in is a split monomorphism. A monomorphism is a left-cancellable morphism, i.e. a morphism
f, such that f ◦ g = f ◦ h ⇒ g = h. In concrete categories, a monomorphism is a slightly weaker concept
than an injection, which is itself a slightly weaker concept than a split monomorphism. Finally, we have a
direct system (TnM, in) and we can take the direct limit (also called inductive limit or colimit):

T M = lim−→TnM =
∐
n

TnM/ ∼,

where the equivalence relation ∼ is given by the identification in the disjoint union of Tn−1M and its
injection in TnM. Thus, we can also see T M as being the increasing union

⋃
n TnM. This direct limit T M

will play the role of the free operad over the S−module M.
Let us detail another viewpoint, using tree diagrams, of the free operad. In order to do this we need

some more information about the relationship between operads and trees.
Remark (Tree Guidelines 3): Recall that the composite P ◦ Q of two S−modules P and Q is defined by
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(P ◦ Q)(n) =
⊕
k∈N

i1+...+ik=n

Pk ⊗Σk
(Q(i1)⊗ ...⊗Q(ik))⊗K[Sh(i1, ...ik)].

and that this space is spanned by (equivalence classes of) elements (µ; ν1, ..., νk;σ), where µ ∈ Pk,
νj ∈ Q(i1), and σ ∈ K[Sh(i1, ...ik)].

In order to simplify notations, we will often omit the shuffles in the following. An element (µ; ν1, ..., νk)
will be represented by

µ

ν3ν2ν1

, respectively by

P

QQQ

if we are not interested in the chosen operation (and its arity), but only in the corresponding space.
We will now apply this notation to the case of the free operad T M, which is sometimes called the tree

module. The unique element id of T0M = I is represented by the trivial tree. If we consider, for instance,
an element (µ;µ1, id, µ2, id, µ3) of M ◦ (I ⊕M), it can be represented by

µ

µ3idµ2idµ1

, or, more generally by

M

MMM

Note that, in particular, elements

M

MMMMM

of M◦2 are of this type, so that M◦2 ⊂ T2M. In general, TnM. is the space of trees with n levels at
most, whose vertices are labelled by (elements of) M. Furthermore, M◦n ⊂ TnM.

We have, by successive application of the ik−s, morphisms in,m : TnM → TmM. These give rise to a
morphism u : I → T M Moreover, we have morphisms jn : M ◦ Tn−1M given by inclusion of the second
term in the definition of TnM. These give rise to a morphism j : M → T M.

Theorem 1.1. There is a composition morphism γ, such that (T M,γ, u) is an operad, which together with
j is the free operad over M.

Proof: Composition is defined on elements of ,T M ◦T M, T M =
⋃
n TnM, it is defined on elements of

the form

TnM

TmMTmMTmMTmMTmM

Therefore, we define inductively on TnM ◦TmM, by

TnM ◦TnM = (I ⊕ (M ◦Tn−1M)) ◦TmM ' TmM ⊕ (M ◦ (Tn−1 ◦TmM))

im,n+m⊕id◦γn−1,m−−−−−−−−−−−−−→ Tn+mM ⊕ (M ◦Tn+m−1M)
id+jn+m−−−−−−→ Tn+mM.

Of course, one still has to check that the definition is independent of the choices of n and m, and that
all other conditions (associativity, unitality and universality) are verified. �
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Remark: Note that in the above definition of the composition map γ, we used left-additivity of the
composition ◦ of S−modules. Moreover, we used the associativity isomorphism

(M ◦Tn−1M) ◦TmM 'M ◦Tn−1 ◦TmM),

which bares some differences to its algebraic analogue. In particular, when working in a graded context, this
associativity isomorphism will lead to Koszul sign, since the switching map is involved.

Example 1.2. Consider the S−module M = (0,W, 0, ...), where W is a vector space. The corresponding
Schur functor is, applied on a vector space V, M(V ) = W ⊗ V. Note that this functor is linear, i.e. M(V ⊕
V ′) = M(V )⊕M(V ). We can thus write

T0M = I

T1M = I ⊕M
T2M = I ⊕ (M ◦ (I ⊕M)) = I ⊕M ⊕M◦2

...

TnM = I ⊕ (M ◦Tn−1M) = I ⊕M ⊕ ...⊕M◦n

...

as Schur functors, or, equivalently

T0M = (0,K, 0, ...)
T1M = (0,K⊕W, 0, ...)
T2M = (0,K⊕W ⊕W⊗2, 0, ...)

...

TnM = (0,K⊕W ⊕W⊗2 ⊕ ...⊕W⊗n, 0, ...)
...

as S−modules. Finally, we get
T M = (0, T (W ), 0, ...)

and we recover the tensor algebra T (W ), i.e. the free associative algebra over W.
It is possible to introduce a weight grading on the free operad T M. This is done by defining the weight

of an element µ ∈ M(n) to be equal to one, and the weight of the element id ∈ I(1) to be zero. The weight
of a general element of T M is then given by the number of operations of M, which it is built from. In
terms of trees, the weight is given by the number of vertices (decorated by M). As usually, we denote the
space of elements of weight k by T M (k). In particular, we have that T M (0) = I, T M (1) = M, and that
T M (2) ⊂M◦2 ⊂ T2M.

1.4.2 Free operad and types of algebras

The importance of the free operad lies in the fact that any operad can be given as the quotient of a free
operad by an operadic ideal. Indeed, the operad corresponding to some type of algebras can be given as the
quotient T M/(R), where the S−module M is determined by the generating operations of the considered
algebra, and R ⊂ T M is determined by the relations that these operations verify.

Let us be more precise. An algebra of type P is given by a vector space A and n-ary operations µn :
A⊗n → A, called generating operations, satisfying certain relations rj = 0. Further, we assume that the
relations are multilinear, i.e. of the form rj =

∑
k ϕk = 0, where ϕk is a composite of generating relations

(and identities). The elements rj =
∑
k ϕk are called relators. The category of algebras of type P is denoted

by P-Alg.
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Example 1.3. Let A be an algebra of type associative, i.e. an associative algebra, then there is only one
generating operation, namely the binary multiplication µ : A⊗2 → A, satisfying the associativity relation
−µ ◦ (µ, id) + µ ◦ (id, µ) = 0. The unique relator r is given by r = ϕ1 + ϕ2 = −µ ◦ (µ, id) + µ ◦ (id, µ).

Let M be the S-module, whose arity n spaces are generated by the n-ary generating operations µn, and
where the Σn−module structure is given by the symmetries of these operations. Since the relators are com-
posites of these generating relations (and identity), they span a sub- S−module R of the free operad T M.
Let (R) denote the operadic ideal of T M generated by R. The precise definition of operadic ideals is given
as follows:

Definition 1.5. An operadic ideal I of an operad P is a sub−S−module of P, such that for any family of
operations {µ; ν1, ..., νk} of P, we have that if one of these operations is in I, then the composite γ(µ; ν1, ..., νk)
is also in I.

This way, we have naturally constructed the operad T M/(R), which corresponds to algebras of type P.
For algebras of type P, there exists the notion of free algebras of type P over a vector space V. Let P

denote the functor P : V 7→ P(V ), which gives the free algebra of type P over V. As we have seen in the
previous chapter, this functor P is a Schur functor, and more precisely an operad. By construction also gives
the free algebra of type P over the vector space V. Since both constructions are functorial in V, the operads
P and T M/(R) coincide. We get the following

Proposition 1.2. A type P of algebras (whose relations are multilinear) determines an operad (T M/(R))(V ).
Moreover, the category P−Alg of algebras over this operad is equivalent to the category P-Alg of algebras of
the given type P.

2 Differential Graded Operads

Definition 2.1. Differential graded operad A is a sequence of chain complexes

...
d← A(1)0

d← A(1)1
d← A(1)2

d← ...
d← A(1)n

d← ...

...
d← A(2)0

d← A(2)1
d← A(2)2

d← ...
d← A(2)n

d← ...

.........

...
d← A(k)0

d← A(k)1
d← A(k)2

d← ...
d← A(k)n

d← ...

.........

equipped with the following structure:
(i) Each A(n)∗ is a Σn−module, that is the symmetric group Σn acts on the chain complex A(n)∗.
(ii) There is defined a (partial) composition product

a(k)m ◦i b(l)n ∈ A(k + l − 1)m+n, i = 1, 2, ..., k

so that the following conditions are satisfied:
Associativity. For f ∈ A(p)∗, g ∈ A(q), h ∈ A(r)∗

f ◦i (g ◦j h) = (f ◦i g) ◦i+j−1 h, 1 ≤ i ≤ p, 1 ≤ j ≤ q;
(f ◦j h) ◦i g = (f ◦i g) ◦q+j−1 h, 1 ≤ i < j ≤ p.

Compatibility with differential. The composition operation

◦i : A(k)∗ ⊗A(l)∗ → A(k + l)∗

is a chain map
d(f ◦i g) = d(f) ◦i g + (−1)nf ◦i d(g).

Compatibility with symmetric group action. Unit. There exists e ∈ A(1)0 such that

a ◦i e = e ◦1 a = a.
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By a degree p derivation on an operad P we mean a sequence θ = {θ(n) : P(n)→ P(n)}
of equivariant degree p maps such that

θ(m+ n− 1)(f ◦i g) = θ(m)(f) ◦i g + (−1)p.|f |.f ◦i θ(n)(g),

for f ∈ P(m), g ∈ P(n), m, n ≥ 1 and 1 ≤ i ≤ n. We denote by Derp(P) the vector space of all degree g
derivations of P.

Lemma 2.1. Let φ ∈ Derp(P) and ψ ∈ Derq(P). The the formula

[φ, ψ](n) := φ(n)ψ(n)− (−1)pqψ(n)φ(n), n ≥ 2

defines on Der∗(P) the structure of a graded Lie algebra.

Proof. An easy exercice. �
By a differential operad we mean a couple (S, d) where S is an operad and d is a degree −1 derivation

of S, d ∈ Der−1(S), with d2 = 0. It is clear that for such a differential operad the collection H = H(S, d) :=
H(S(n), d(n));n ≥ 2, where H(S(n), d(n)) denotes the homology of the differential space (S(n), d(n)), has
a natural structure of an operad, called the homology (operad) of (S, d). Observe that what we call a
differential operad here is exactly an operad in the monoidal category of differential spaces. Of course, any
nondifferential operad S can be considered as a differential operad with the trivial differential. If we wish to
stress that we consider S in this way, we write (S, 0) instead of S.

Generic example. Any dg module (V, d) has its (nonunital) endomorphism operad (End(V),D) defined
by

End(V )(n) =

{
Hom∗(V

⊗n, V ), for n ≥ 2, and
0, for n = 1,

where Homp(V
⊗n, V ) denotes the vector space of homogeneous degree p linear maps f : V ⊗n → V. The

composition maps are defined in the obvious way and the differential D is, for f ∈ Homp(V
⊗n, V ) given by

D(f) := d ◦ f − (−1)p.f ◦ d⊗n,

where d⊗n is the usual differential induced by d on V ⊗n.
For f ∈ Homp(V

⊗n, V ) and g ∈ Homq(V
⊗n, V ), the product f◦ig ∈ Homp+q(V

⊗n+m−1, V ), i = 1, 2, ...
is defined by

f◦ig(v1 ⊗ ...⊗ vm+n−1) = f(v1 ⊗ ...⊗ vi−1 ⊗ g(vi ⊗ ...⊗ vi+n−1)⊗ ...⊗ vm+n−1).

The circle product is the substitution

f ◦ (g1, ..., gm)(v1 ⊗ ...⊗ vk1+...+km) =
∑

f(g1(v1 ⊗ ...⊗ vk1)⊗ ...⊗ gkm(vk1+...+km−1
⊗ ...⊗ vk1+...+km)).

The defining conditions of an operad mimic the properties of the endomorphism opearad.
The endomorphism operad inspires the following terminology: An element v ∈ P(n)k has the degree k

and the arity n.
An algebra over a differential operad (S, dS) (or an (S, dS)−algebra) is then a differential operad homo-

morphism (S, dS)→ (End(V ), D).
Return back to free operad, we can construct a graded as follows; consider a sequenceM := {M(n); n ≥

2} of graded Σn−modules, from the homogeneity of the axioms of an (nonunital) operad, each F(M)(n) is
naturally graded, F(M)(n) =

⊕
l≥1 F l(M)(n) and that grading has the following properties.

(i) Each F l(M)(n) is a Σn−invariant submodule of F(M)(n),
(ii) F1(M)(n) = M(n) and F≥n(M)(n),
(iii) If f ∈ F l(M)(n) and g ∈ Fk(M)(n) then f ◦i g ∈ Fk+l(M)(m+ n− 1).
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Lemma 2.2. The correspondence H : (S, dS)→ H(S, dS) induces a functor from the category of differential
operads to the category of nondifferential operads.

If (V, dV ) is a differential vector space and (End(V ), D) the endomorphism operad, then there exists
a noncanonical map Φ : (End(H(V, dV ), 0) → (End(V ), D) of differential operads inducing the canonical
isomorphism

(End(H(V, dV ), 0) ∼= H(End(V ), D)

given by the Künneth formula.

Proof. The first part of the lemma is an easy exercise. To prove the second part, choose a decomposition
V = H ⊕ B ⊕ C with H ⊕ B = Ker(d) and B = Im(d). Let ι : H → V be the corresponding inclusion
and π : V → H be the corresponding projection. For an element f ∈ End(H)(n), f : H⊗n → H, let
Φ(f) ∈ End(V ) be defined as Φ(f) := ι ◦ f(π⊗n). Let us verify that Φ : (End(H(V, d), 0) → (End(V ), D)
thus defined is a homomorphism of differential operads. For f ∈ End(H)(m), g ∈ End(H)(n)and1 ≤ i ≤ n,
we have

Φ(f ◦i g) = ι ◦ g(I⊗(i−1) ⊗ f ⊗ I⊗(n−i))(π⊗(m+n−1)) = ι ◦ g(π⊗(i−1) ⊗ f(π⊗m)⊗ π⊗(n−i))

= ι ◦ g(π⊗(i−1) ⊗ πιf(π⊗m)⊗ π⊗(n−i)) = Φ(f) ◦i Φ(g),

because πι = I. We also easily have D(Φ(f)) = dιfπ⊗m− (−1)pιf(πd)⊗n = 0, because dι = πd = 0, thus
Φ is indeed a map of differential operads. The rest of the statement follows from the Künneth formula. �

Let A : (S, dS)→ (End(V ), D) be an (S, dS)−algebra structure on (V, d). By the above lemma, A induces
an H(S, dS)−algebra structure on H(V, d),

H(A) : H(S, dS)→ End(H(V, d)

which we call the homology algebra structure induced by A.

3 Model for Operads (Markl Theorem)

The following theorem show the existence of a minimal model for differential operads.

Theorem 3.1. Let (S, dS) be a differential graded operad (with S(1) = 0 as usual). Then there exist a
S−modules M = {M(n);n ≥ 2}, a differential d on F(M) and a homomorphism ν : (F(M), d) → (S, dS)
such that

(i) the differential d is minimal, d(M) ⊂ F≥2(M), and
(ii) the map ν induces an isomorphism in homology.
The object ν : (F(M, d)→ (S, dS) is called the minimal model of the differential operad (S, dS).
It is unique in the sense that if ν′ : (F(M′, d) → (S, dS) is another minimal model of (S, dS), then the

differential operads (F(M, d) and (F(M′, d) are isomorphic.

Proof.
We denote by s and s−1 respectively the suspension and the desuspension of a graded module or graded

vector space and ((sV )p = Vp−1, (s−1V )p = Vp+1).
Let X(2) := H(S, dS)(2) and let σ(2) : X(2) → Z(S, dS)(2) ⊂ S(2) be an equivariant splitting of the

projection cl(2) : Z(S, dS)(2) → H(S, dS)(2) ( cl will denote the projection of a chain onto its homology
class). Define a differential d2 on F(X(2)) and a map ν2 : (F(X(2), d2)→ (S, dS) by

d2 = 0 and ν|X(2) := σ(2).

We finish the construction by induction. Suppose we have already constructed a collection X(< n) =
{X(k); 2 ≤ k < n}, a differential dn−1 on F(X(< n)) and a map νn−1 : (F(X(< n)), dn−1) → (S, dS) such
that

(i)n−1 the differential dn−1 is minimal, dn−1(X(< n)) ⊂ F≥2(X(< n)) and
(ii)n−1 the mapH(νn−1)(k) : H(F(X(< n)), dn−1)(k)→ H(S, dS)(k) is an isomorphism for any k ≤ n−1.
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Let A(n) := H(S, dS)(n)/(Im(H(νn−1))(n), B(n) := Ker(H(νn−1))(n) and B(n) := sB(n).

Let σ(n) : A(n) → Z(S, dS)(n) be an equivariant section of the composition Z(S, dS)(n)
cl→ A(n) and

let r′(n) : H(F(X(< n)), dn−1)(n) → Z(F(X(< n)), dn−1)(n) be an equivariant section of the projection
cln : Z(F(X(< n)), dn−1)(n) → H(F(X(< n)), dn−1)(n) and let r(n) : B(n) → Z(F(X(< n)), dn−1)(n) be
the composition of the inclusion B(n) ↪→ H(F(X(< n)), dn−1)(n) and r′(n). Define

X(n) := A(n)⊕B(n), X(≤ n) := X(< n)⊕X(n),

dn|X(<n) := dn−1|X(<n), dn|A(n) := 0, dn|B(n) := r(n) ◦ s−1,

νn|X(<n) := νn−1|X(<n), νn|A(n) := σ(n), andνn|B(n) := 0.

Then dn is obviously minimal since Z(F(X(< n)), dn−1)(n) ⊂ F(X(< n))(n) ⊂ F≥2(X(< n))(n).
Also H(νn)(n) is obviously an epimorphism, by construction. Let us prove that H(νn)(n) is a monomor-

phism.
Let z ∈ Z(F(X(≤ n)), dn)(n) and write it in the form z = a + b + ω, with a ∈ A(n), b ∈ B(n)

and ω ∈ F≥2(X(< n)). By definition dn(a) = 0, therefore −dn(b) = −r(n)(s−1b) = dn(ω). Since ω is
decomposable we have, in fact, dn(ω) = dn−1(ω), therefore dn(ω) represents a trivial homological class
in H(F (X(< n)), dn − 1)(n) and b = 0. If z represents an element of Ker(H(νn))(n), then a = 0, so
z ∈ Z(F(X(< n)), dn−1)(n) and obviously cl(z) ∈ Ker(H(νn−1))(n). But then z = dn(scln(z)) by the
construction of dn which implies that z represents a trivial homology class in H(F(X(≤ n)), dn). We see
that our data satisfy the conditions (i)n–(ii)n and we finish the construction by induction.

We leave the proof of the uniqueness to the reader. �

References

[1] Patrick Hilger and Norbert Poncin, Lectures on Algebraic Operads, (2011).

[2] Tornike Kadeishvili, Operadic Algebraic Topology, ICTP Map Summer School, 11-29
August 2008, Trieste.

[3] Jean-Louis Loday and Bruno Vallette, Algebraic operads,
http://math.unice.fr/ brunov/Operads.pdf

[4] Martin Markl, Models for operads, Communications in Algebra, 24(4):1471–1500, 1996.

12


	Free Operads
	Functorial definition of operads[1],[3]:
	S-modules
	P-algebras
	Free operad
	Construction of the free operad
	Free operad and types of algebras


	Differential Graded Operads
	Model for Operads (Markl Theorem)

