Introduction to Operad Theory

HICHAM YAMOUL

Département de Mathématiques et Informatique École Normale Supérieure UNIVERSITÉ HASSAN II DE CASABLANCA Algebraic Topology Moroccan Research Group

Talk UIR, January 5, 2019

Basic Definitions

Algebras over operads

Homotopy Theories of Algebras over Operads

References

Hicham YAMOUL Introduction to Operad Theory

・ロト ・回ト ・ヨト ・ヨト

臣

Definition (Nonsymmetric Operad)

A nonsymmetric operad X, also called operad without permutations, is a family $\{X_n\}_{n\in\mathbb{N}}$ of objects (sets in particular) whose elements are called *n*-ary operations, together with a distinguished element $I \in X_1$ and a collection of composition functions

$$\circ_{i_1,\ldots,i_k}:X_k\times X_{i_1}\times\ldots\times X_{i_k}\to X_{i_1+\ldots+i_k}$$

satisfying the associativity and identity axioms below. We denote the action of the composition maps by :

$$\mu:(f,g_1,...,g_k)\mapsto \mu(f,g_1,...,g_k)=f\circ_{i_1,...,i_k}(g_1,...,g_k),$$

(Associativity) Let $n \in \mathbb{N}$, and $f \in X_n$. For each $i \in \{1, 2, ..., n\}$, let $a_i \in \mathbb{N}$ and $g_i \in X_{a_i}$. Then for each a_i , for each $j \in \{1, 2, ..., a_i\}$, let $h_{i,j} \in X_{k_{i,j}}$ for some arbitrary $k_{i,j} \in \mathbb{N}$. Then :

$$f \circ_{(k_{1,1}+...+k_{1,a_1}),...,(k_{n,1}+...+k_{n,a_n})} (g_1 \circ_{k_{1,1},...,k_{1,a_1}} (h_{1,1},...,h_{1,a_1})$$

 $\begin{array}{l} (\dots, g_n \circ_{k_{n,1}, \dots, k_{n,a_n}} (h_{n,1}, \dots, h_{n,a_n})) = (f \circ_{a_1, \dots, a_n} \\ (g_1, \dots, g_n)) \circ_{k_{1,1}, \dots, k_{1,n}, k_{2,1}, \dots, k_{n,a_n}} (h_{1,1}, \dots, h_{1,a_1}, h_{2,1}, \dots, h_{n,a_n}). \\ \textbf{(Identity)} \ \text{For any } n \in \mathbb{N} \ \text{and} \ f \in X_n, \ \text{we have} \\ f \circ_{1, \dots, 1} (I, \dots, I) = f = I \circ_n (f). \end{array}$

イロト イポト イヨト イヨト

Definition (Symmetric Operad)

A symmetric operad (or just operad) is a nonsymmetric operad X equiped with a right action of the symmetric group S_n on each X_n satisfies the following equivariance axioms (Equivariance 1) Let $n \in \mathbb{N}$, $f \in X_n$, and $g_1 \in X_{a_1}, ..., g_n \in X_{a_n}$ for some arbitrary $a_i \in \mathbb{N}$. Let $\tau \in S_n$, and $\sigma = \tau^{-1}$. Then :

$$(f.\tau) \circ_{a_1,...,a_n} (g_1,...,g_n) = (f \circ_{a_{\sigma(1)},...,a_{\sigma(n)}})(g_{\sigma(1)},...,g_{\sigma(n)}).\tau',$$

where $\sigma \in S_n$, and $\tau' \in S_{a_1+...+a_n}$ (Equivariance 2) Let n, f and the g_i and a_i be as above. Let $\sigma_1 \in S_{a_1}, ..., \sigma_n \in S_{a_n}$. Then :

$$f \circ_{a_1,\ldots,a_n} (g_1.\sigma_1,\ldots,g_n.\sigma_n) = (f \circ_{a_1,\ldots,a_n} (g_1,\ldots,g_n)).(\sigma_1,\ldots,\sigma_n),$$

where $(\sigma_1, ..., \sigma_n) \in S_{a_1,...,a_n}$ is the disjoint union of the σ_i .

・ 同 ト ・ ヨ ト ・ ヨ ト

Example (Canonical Operad)

Let X be a set. For each $n \in \mathbb{N}$, define $\operatorname{End}_X(n) = \operatorname{Hom}(X^n, X)$, for n, f, g_i , and a_i as in the definition of an operad, we define :

$$f \circ_{a_1,...,a_n} (g_1,...,g_n) = f(g_1,...,g_n),$$

where $f(g_1, ..., g_n)$ represents the function given by :

$$(x_1,...,x_{i_1},...,x_{i_1+...+i_n}\mapsto f(g_1(x_1,...,x_{i_1}),...,g_n(x_{i_{n-1}+1},...,x_{i_n})).$$

If $\tau \in S_n$, we define $(x_1, ..., x_n) \mapsto f(x_{\sigma(1)}, ..., x_{\sigma(n)})$, where $\sigma = \tau^{-1}$. End_X is a symmetric operad.

Algebra over an operad

Definition (Morphism of Nonsymmetric Operads)

Let (X, \circ, I) and (Y, \circ', J) be a nonsymmetric operads. Then a morphism of nonsymmetric operads $F : X \to Y$ is a family of functions $\{F_n : X_n \to Y_n\}_{n \in \mathbb{N}}$ that satisfy the following : (i) $F_1(I) = J$. That is, F preserves the identity, (ii) For n, f, g_i , and a_i as in the definition of an operad,

$$F_{a_1+...+a_n}(f \circ_{a_1,...,a_n}(g_1,...,g_n)) = F_n(f) \circ'_{a_1,...,a_n}(F_{a_1}(g_1),...,F_{a_n}(g_n)).$$

イロト イポト イヨト イヨト

Algebra over an operad

Definition (Morphism of Symmetric Operads)

Let X and Y be symmetric operads with group actions . and * respectively. Then a morphism of operads $F : X \to Y$ is a morphism of nonsymmetric operads that additionally satisfies : (iii) For any $n \in \mathbb{N}$, $f \in X_n$, and $\tau \in S_n$, we have

$$F_n(f.\tau) = F_n(f) * \tau.$$

Algebra over an operad

Definition (Algebra over an Operad)

Let X be an operad. An algebra over X, also called X-algebra, is a morphism of operads $F : X \to \text{End}_O$ for some set O. This may either be a morphism of nonsymmetric or symmetric operads, depending on the type of X.

Definition (Morphism of Algebras over an Operad)

Let X be an operad, and let $F : X \to \operatorname{End}_O$ and $G : Y \to \operatorname{End}_P$ be two X-algebras. A morphism of algebras $M : F \to G$ is a function $M : O \to P$ such that for all $f \in X_n$ and $\omega_1, ..., \omega_n \in O$, the following equivariance property holds :

$$M([F(f)](\omega_1, ..., \omega_n)) = [G(f)](M(\omega_1), M(\omega_2), ..., M(\omega_n)).$$

Quotient Operads

Let *R* be a unital commutative ring and we denote $\mathcal{M} := Mod_R$ Definition (Operadic Ideals)

Let X be a symmetric operad over \mathcal{M} . Let $\{Y_n\}_{n\in\mathbb{N}}$ be a family of object in \mathcal{M} such that Y_n is a graded submodule of X_n for all $n \in \mathbb{N}$, and each Y_n is S_n -invariant with respect to the symmetric action from X. If for any $f, g_1, ..., g_n \in X$, where at least one of those elements in some Y, we have $f \circ_{a_1,...,a_n} (g_1, ..., g_n) \in Y$. Then Y is called an operadic ideal of X.

Quotient Operads

Definition (Quotient Operad)

Let Y be an operadic ideal of X. Define the quotient operad X/Y as follows : set $(X/Y)_n = X_n/Y_n$ for each $n \in \mathbb{N}$, where this represents a quotient of graded modules. We designate $I + Y_1$ as the identity, where I is the identity of X, and define the composition map by :

$$(f + Y_n) \circ_{a_1,\ldots,a_n} (g_1 + Y_{a_1},\ldots,g_n + Y_{a_n}) = (f \circ_{a_1,\ldots,a_n} (g_1,\ldots,g_n)) + Y_{a_1+\ldots+a_n}.$$

We define a symmetric action on X/Y by : $(f + Y_n).\sigma = (f.\sigma) + Y_n$ for all $\sigma \in S_n$.

Quotient Operads

Theorem (Quotient Operads are Operads)

The quotient operad X/Y defined above is an operad

Theorem

Let X and Y be \mathcal{M} -operads, and $F : X \to Y$ a morphism of operads. Then the kernel of F, defined as $\ker_n(F) := \{f \in X_n | F(f) = 0 \in Y_n\}$, is an operadic ideal.

Differential graded modules

In the category dg-Mod_R, we consider a sequence $\{M_n, d_n\}_{n\geq 1}$ of dg-modules such that each M_n is equipped with an action of S_n , we rewrite the previous definition of an operad in the case of dg-Mod, as follows :

 $(f, g_1, ..., g_n) \in M_n \otimes M_{i_1} \otimes ... \otimes M_{i_n} \mapsto f(g_1, ..., g_n) \in M_{i_1+...+i_n}$. We have a map of dg-modules. Therefore, it must also satisfy the derivation relation

$$d(f(g_1,...,g_n)) = d(f)(g_1,...,g_n) + \sum_{k=1}^n \varepsilon(g_1,...,dg_k,...,g_n)$$

where $\varepsilon = (-1)^{|f|+|g_1|+\ldots+|g_{k-1}|}$ for each k.

(a)

Differential graded modules

If $A \in \text{dg-Mod}_R$, an algebra over the operad \mathcal{O} is an object wich has the operations described by \mathcal{O} . Consider the map $\mu : \mathcal{O}(n) \otimes A^{\otimes n} \to A$ satisfying the usual associativity and equivariance axioms, we denote the image of $(f, x_1, ..., x_n)$ under the map by $f(x_1, ..., x_n)$ and $|f(x_1, ..., x_n)| = |x_1| + ... + |x_n|$. The structure maps are maps of dg modules and satisfy a derivation relation :

$$\delta(f(x_1,...,x_n)) = d(f)(x_1,...,x_n) + \sum_{k=1}^n \varepsilon(x_1,...,\delta x_k,...,x_n)$$

Theorem Let (A, δ) be a dga over the operad (\mathcal{O}, d) . Then the homology $H(A, \delta)$ is an algebra over the homology operad $H(\mathcal{O}, d)$.

Homotopy Theories of Algebras over Operads

Hicham YAMOUL Introduction to Operad Theory

・ロン ・回 と ・ ヨ と ・ ヨ と

Э

References

- J. M. Boardman and R. M. Vogt, Homotopy Invariant Algebraic Structures on Topological Spaces. LNM 347, Springer-Verlag, New York, 1973.
- B. Fresse, Modules over operads and functors, LNM 1967, Springer, 2009
- T. Leinster, Higher operads, higher categories, LMS, volume 298, Cambridge University Press, 2004.
- J. P. May, The Geometry of Iterated Loop Spaces, LNM 271, Springer-Verlag, New York, 1973.
- V. A. Smirnov, Homotopy Theories of Algebras over Operads, Matematisheskie Zametki, vol. 78, n°2, 2005, pp. 278-285.

▲圖▶ ▲ 国▶ ▲ 国▶