Cocatégorie de Ganéa en homotopie rationnelle

MANSOURI Mohammed Wadia

01 février 2014

Plan

- LS-catégorie
 - Une caractérisation de Ganéa
 - 2 LS-catégorie rationnelle
- Cocatégorie
 - Définition
 - 2 La construction Cofibre-fibre

Cocatégorie de Ganea

Ganea associe à chaque espace X une suite d'espaces $G_n(X)$ et d'applications continues $J_n: X \longrightarrow G_n(x)$. Il définit la cocatégorie de l'espace X; invariant homotopique noté $cocat\ X$; comme dual au sens de Eckmann-Hilton de la LS-catégorie de X.

Toomer démontre que cette construction commute à la localisation en 0 $G_n(X_0) \sim G_{n0}(X)$ et obtient ainsi une première approximation

Nil
$$\pi_*(\Omega X) \otimes \mathbb{Q} \leq cocat X_0 \leq cocat X$$
,

où $Nil \ \pi_*(\Omega X) \otimes \mathbb{Q}$ désigne la nilpotence de l'algèbre de Lie d'homotopie de X.

Cette inégalité suggère d'utiliser la longueur des crochets dans le modèle de Quillen de l'espace X pour calculer ou approximer cocat X_0 .

Modèle de Quillen de la fibre homotopique

Étant donné une application $f: E \longrightarrow B$, on peut toujours lui associer un modèle de Quillen surjectif

$$(\mathbb{L}(U \oplus V), \partial) \stackrel{\pi}{\longrightarrow} (\mathbb{L}(V), \overline{\partial}) \longrightarrow 0.$$

L'espace $Ker \pi$ muni de la différentielle induite est un modèle de la fibre homotopique. $Ker \pi$, est une algèbre de Lie libre; il existe donc un espace vectoriel gradué W tel que $Ker \pi = \mathbb{L}(W)$. Le Lemme suivant décrit W.

Lemme [R.Cohen, J.C.Moore, et A.Neisendorfer]

Toute suite exacte d'algèbres de Lie libres

$$0 \longrightarrow \mathbb{L}(W) \stackrel{j}{\longrightarrow} \mathbb{L}(U) \stackrel{\pi}{\longrightarrow} \mathbb{L}(V) \longrightarrow 0,$$

est scindée. De plus il existe une section σ de π telles que $\sigma(V) \subset U$.

Posons $U = K \oplus \sigma(V)$, alors W admet une structure de T(V)-module et il existe un isomorphisme de T(V)-module

On a alors le diagramme suivant :

$$\begin{array}{ccc} & & & & & \\ & & \searrow & & \searrow \\ 0 \longrightarrow & \mathbb{L}(T(V) \otimes U) & \stackrel{k}{\longrightarrow} & \mathbb{L}(U \oplus V) & \stackrel{\pi}{\longrightarrow} \mathbb{L}(V) \longrightarrow 0, \end{array}$$

avec k est l'application linéaire définie par :

$$\begin{cases} k(u) = u & \forall u \in U, \\ k(v_1 \otimes v_2 ... \otimes v_n \otimes u) = [v_1, [v_2, ..., [v_n, u]...] & \forall v_i \in V \text{ et } \forall u \in U. \end{cases}$$

Nous allons munir $\mathbb{L}(T(V) \otimes U)$ d'une différentielle δ telle que $k \circ \delta = \partial \circ k$.

La différentielle δ

Définiton

Considérons l'application linéaire $\hat{a}d$ définie sur $U\oplus V$ par

sur *U*

$$\hat{a}d: U \longrightarrow Der\mathbb{L}(T(V) \otimes U),$$
 $u \longmapsto \hat{a}d_u = [u, \cdot]$

• sur V. Pour $v \in V$, $\hat{a}d_v$ désigne l'unique dérivation prolongeant l'application linéaire

$$\hat{a}d_{\mathbf{v}}: T(\mathbf{V}) \otimes U \longrightarrow T(\mathbf{V}) \otimes U$$
 $\alpha \longmapsto \mathbf{v} \otimes \alpha.$

On prolonge $\hat{a}d$ sur $\mathbb{L}(U\oplus V)$ en un morphisme d'algèbres de Lie.

où $(Der \mathbb{L}(T(V) \otimes U), \widehat{\partial})$ désigne l'algèbre de Lie des dérivations de $\mathbb{L}(T(V) \otimes U)$. Avec :

$$[\theta_1, \theta_2] = \theta_1 \theta_2 - (-1)^{|\theta_1||\theta_2|} \theta_2 \theta_1$$
 où $|\theta_i| = \text{degr\'e de } \theta_i$ et $\widehat{\partial} \theta_1 = [\partial, \theta_1].$

Proposition

La différentielle δ est définie sur $\mathbb{L}(T(V) \otimes U)$ par :

$$\left\{ \begin{array}{ll} \delta u = \partial u & \forall u \in U \\ \delta \hat{\mathsf{a}} d_{\mathsf{v}}(\varphi) = \hat{\mathsf{a}} d_{\partial \mathsf{v}}(\varphi) + (-1)^{|\mathsf{v}|} \hat{\mathsf{a}} d_{\mathsf{v}}(\delta \varphi) & \forall \mathsf{v} \in V \text{ et } \forall \varphi \in T(V) \otimes U. \end{array} \right.$$

Comme l'application k est injective, il suffit de vérifier la propriété suivante de $\hat{a}d$.

Lemme

Pour tout
$$\alpha \in \mathbb{L}(U \oplus V)$$
 et $\varphi \in \mathbb{L}(T(V) \otimes U)$ on a :

$$k(\hat{a}d_{\alpha}(\varphi)) = [\alpha, k(\varphi)].$$
 (*)

La construction cofibre-fibre

Soit $S \xrightarrow{f} S' \xrightarrow{q} C_f$ une cofibration, notons F_q la fibre homotopique de l'application q. Comme $q \circ f \simeq 0$, f se reléve en $g: S \longrightarrow F_q$, notons C_g la cofibre homotopique de g.

$$\begin{array}{cccc}
& F_q & \longrightarrow & C_g \\
& g \nearrow & \downarrow & & \\
S & \stackrel{f}{\longrightarrow} & S' & \stackrel{q}{\longrightarrow} & C_f.
\end{array}$$

Donnons un modèle de Quillen de chaque étape de cette construction .

Partant d'un modèle minimal de l'application f;

 $(\mathbb{L}(U),\partial)\stackrel{\widetilde{f}}{\longrightarrow} (\mathbb{L}(W),\partial')$, il existe un espace vectoriel gradué V et un quasi-isomorphisme μ rendant commutatif le diagramme :

$$(\mathbb{L}(W), \partial') \\ \nearrow \qquad \uparrow \mu \\ (\mathbb{L}(U), \partial) \longrightarrow (\mathbb{L}(U \oplus V), D) \longrightarrow (\mathbb{L}(V), \overline{D}).$$

Dans ce cas $(\mathbb{L}(V), \overline{D})$ est le modèle minimal de la cofibre C_f . Si la suite $(\mathbb{L}(U), \partial) \longrightarrow (\mathbb{L}(U \oplus V, D) \stackrel{q_0}{\longrightarrow} (\mathbb{L}(V), \overline{D})$ est un modèle de Quillen de la cofibration, alors la fibre F_q a pour modèle de Quillen $(\mathbb{L}(T(V) \otimes U), \delta)$. $T(V)\otimes U$ se décompose sous la forme $U\oplus T^+(V)\otimes U$ et d'après les propriétés de la différentielle δ , l'injection $\mathbb{L}(U)\longrightarrow \mathbb{L}(U\otimes T^+(V)\otimes U)$ est un homomorhisme a.l.d.g.. Un modèle de Quillen de la cofibration $S\stackrel{g}{\longrightarrow} F_p{\longrightarrow} C_g$ est donné par

$$(\mathbb{L}(U), \partial) \longrightarrow (\mathbb{L}(U \oplus T^+(V) \otimes U), \delta) \stackrel{q_1}{\longrightarrow} (\mathbb{L}(T^+(V) \otimes U, \overline{\delta}),$$

avec

$$q_1(u) = 0$$
 , si $u \in U$, $q_1(\varphi) = \varphi$, si $\varphi \in T^+(V) \otimes U$,

et $(\mathbb{L}(T^+(V)\otimes U,\overline{\delta})$ est un modèle de Quillen de C_g . D'où un diagramme qui mime la construction topologique

$$(\mathbb{L}(U \oplus T^{+}(V) \otimes U), \delta) \xrightarrow{q_{1}} (\mathbb{L}(T^{+}(V) \otimes U, \overline{\delta})$$

$$\nearrow \qquad k \downarrow$$

$$(\mathbb{L}(U), \partial) \hookrightarrow (\mathbb{L}(U \oplus V), D) \xrightarrow{q_{0}} (\mathbb{L}(V), \overline{D})$$

Modèle de Quillen des espaces de Ganéa

Les générateurs des modèles de Quillen des différents espaces de Ganea, ainsi que leur différentielles , s'obtiennent par itération des constructions de la section précédente. Plus précisément, On a :

Théorème

Soient X un espace topologique et $(\mathbb{L}(U), \partial)$ son modèle de Quillen. Posons

$$\begin{cases} V_0 = sU \\ V_n = T^+(V_{n-1}) \otimes U \end{cases} \quad \text{pour } n \geq 1.$$

Alors, Pour tout $n \geq 0$, il existe une différentielle ∂_n telle que $(\mathbb{L}(U \oplus V_n), \partial_n)$ soit un modèle de Quillen du n-iéme espace de Ganéa $G_n(X)$ de X.

Lemme

La cofibration canonique, $X \longrightarrow CX \longrightarrow \Sigma X$ a pour modéle de Quillen

$$(\mathbb{L}(U),\partial)\stackrel{i_0}{\longrightarrow} (\mathbb{L}(U\oplus sU),\partial_0)\stackrel{q_0}{\longrightarrow} (\mathbb{L}(sU),0).$$

Avec i_0 et q_0 , définis canoniquement et $\partial_0 u = \partial u$, $\partial_0 su = u - \theta(u)$ où $\theta(u)$ est un élément de l'algébre de Lie ker q_0 .

Comme corollaire du Théorème on a les diagrammes suivant :

$$\begin{array}{ccc} (\mathbb{L}(U \oplus V_n), \partial_n) \\ i_n \nearrow & \downarrow k_n \\ (\mathbb{L}(U), \partial) & \stackrel{i_{n-1}}{\longrightarrow} & (\mathbb{L}(U \oplus V_{n-1}), \partial_{n-1}) & \stackrel{q_{n-1}}{\longrightarrow} (\mathbb{L}(V_{n-1}), \overline{\partial_{n-1}}) \end{array}$$

et $cocat(X_0)$ est le plus petit entier n tel que l'injection i_n admet une rétraction homotopique.

Relation entre $cocat(X_0)$ et $cocat_0(X)$.

Théorème

- **1** On a $cocat(X_0) \leq cocat_0(X)$.
- ② Si $cocat_0(X) \le 2$, alors $cocat(X_0) = cocat_0(X)$.

Démonstration

Nous construisons s_n , homomorphisme d'a.l.d.g. rendant commutatif le diagramme suivant :

$$(\mathbb{L}(U \oplus V_n), \partial_n) \\ i_n \nearrow \qquad \downarrow s_n \\ (\mathbb{L}(U), \partial) \stackrel{q_n}{\longrightarrow} (\mathbb{L}(U)/\mathbb{L}^{>n}(U), \overline{\partial}).$$

Considérons t_n l' homomorphisme d'algèbres de Lie graduées défini par :

$$t_n: \mathbb{L}(U \oplus V_n) \longrightarrow \mathbb{L}(U),$$

tel que

$$t_n(U)=U$$
 et $t_n(V_n)=0$.

MERCI POUR VOTRE ATTENTION