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The ratio between the side and the diagonal of a square
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The
ratio between d and s begins with d = s + r
with 0 < r < s. Notice that this implies
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Notice that XY ∼= BY .



The ratio between the side and the diagonal of a square

The ratio
between s and r begins with s = 2r + r′

with 0 < r′ < r. Notice that this implies
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The ratio between the side and the diagonal of a square

But the picture indicates that the process
will repeat, and hence will repeat
forever. A hidden infinity given by
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The spaces K3 and K4
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The space K5
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Definition
Let Ki denote the CW-complex constructed inductively as follows:
K2 = ∗, a point. Let Ki be the cone CLi where Li is the union of
copies (Kr × Ks)k of Kr × Ks, where r + s = i + 1, and k corresponds
to inserting a pair of parentheses into i symbols

(1 2 · · · k − 1 (k k + 1 · · · k + s− 1) k + s · · · i).

The intersection of copies corresponds to inserting two pairs of
parentheses with no overlap or with one as subset of the other. Define
∂p(r, s) Kr × Ks → Ki to be the inclusion of the copy indexed by
(1 2 · · · (p p + 1 · · · p + s− 1) · · · i).



Definition
An An-space (X;M1, . . . ,Mn) consists of a space X along with a
family of maps Mi : Ki × X×i → X, i ≤ n defined such that
1) M2 is a multiplication with unit.
2) For ρ ∈ Kr and σ ∈ Ks,

Mi(∂k(r, s)(ρ, σ), x1, . . . , xi) =

Mr(ρ, x1, . . . , xk−1,Ms(σ, xk, . . . , xk+s−1), xk+s, . . . , xi).

3) For τ ∈ Ki, i > 2, we have

Mi(τ, x1, . . . ,xj−1, e, xj, . . . , xi)

= Mi−1(sj(τ), x1, . . . , xj−1, xj+1, . . . , xi)

where the maps sj : Ki → Ki−1 are degeneracies.
If the Mi exist and satisfy these conditions for all i ≥ 2 we speak of
(X;Mi) as an A∞-space.



When X is an An-space, then C∗(X) enjoys extra algebraic structure.

Definition
Let k be a field. An n + 1-tuple (A,m1,m2, . . . ,mn) constitutes an
A(n)-algebra if A is a graded k-module, A =

⊕
i

Ai, and the k-linear

maps mi A⊗i → A satisfy the following properties:
1) mi raises degree by i− 2, that is, mi([A⊗i]q) ⊂ Aq+i−2, for all q.
2) If u = u1 ⊗ · · · ⊗ ui ∈ A⊗i, then∑

r+s=i+1,1≤p≤r

±mr(u1⊗· · ·⊗ms(up⊗· · ·⊗up+s−1)⊗· · ·⊗ui) = 0,

where ± is determined by (−1)ε where
ε = (s + 1)p + s

(
i +
∑p−1

j=1 dim uj

)
.

An A(∞)-algebra consists of an augmented k-module A and maps
mi : A⊗i → A satisfying the conditions above for all i ≥ 1.
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