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The title of my talk1 is taken from a poem of John Godfrey Saxe (1816–1887)
and was suggested by Tom Archibald in an early discussion of these ideas. I have
paraphrased and shortened the poem for you:

‘The Blind Men and the Elephant’
Six men of Indostan
to learning much inclined,
all of them were blind.
The First approached the Elephant,
and happening to fall
against his broad and sturdy side, he said,
‘The Elephant is very like a wall!’
The Second, feeling of the tusk,
cried, ‘To me ’tis mighty clear
an Elephant is very like a spear!’
The Third took the
squirming trunk in his hands, and spake,
‘the Elephant is very like a snake!’
The Fourth felt about the knee.
‘The Elephant is very like a tree!’
The Fifth, who touched the ear,
Said: ‘Deny the fact who can,
‘an Elephant is very like a fan!?’
The Sixth, seizing on the swinging tail,
That fell within his scope,
quoth he, ‘the Elephant is very like a rope!’
And so these men of Indostan
Disputed loud and long,
And all were in the wrong!

The term elephant test refers to situations in which an idea or thing “is hard to
describe, but instantly recognizable when spotted” (from Wikipedia).

In science and in mathematics, researchers are called upon to describe new and
usual phenomena using ordinary language. It is suggested by cognitive scientists and
linguists (George Lakoff, Rafael Núñez) that the means by which we describe difficult
ideas is through metaphor.

1Given at University of Casablanca, June 5, 2-13.
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In fact, Lakoff and Núñez would go further to suggest that the source of mathemat-
ics IS metaphor. Here is how their idea works.

The basic mechanism is the conceptual metaphor: a mapping between domains of
discourse, linking one domain of discourse, usually familiar, experiential, sometimes
of the body, to another more conceptual domain that is difficult to describe.

For example, there is the metaphor

SOCIAL ORGANIZATIONS ARE PLANTS.

Source domain: the whole plant, parts of a plant, growth of a plant, removal of parts,
the root of plant, flowering, fruit

=⇒

Target domain: the entire organization, branches, development, reduction, origins, suc-
cesses, benefits.

Of course, such a mapping is meant to generate speech. Here is another example:

IDEAS ARE FOOD

Cooking =⇒ thinking.
‘Let me stew over this.’

Swallowing =⇒ accepting.
‘I can’t swallow that claim.’

Chewing =⇒ considering.
‘I am chewing over the proposal.’

Digesting =⇒ understanding.
‘I can’t digest all of these ideas.’

THE MIND IS A MACHINE

Terms for thinking

‘We’re still trying to grind out the solution to this equation.’
‘My mind just isn’t operating today.’
‘Boy, the wheels are turning now!’

‘I’m a little rusty today.’
‘We’ve been working all day on the problem, and we are running out of steam.’

Notice in these examples how the descriptive actions or words are concrete, while
the things being described are conceptual.

In their description of the sources of mathematics, Lakoff and Núñez propose
metaphors like:

ARITHMETIC IS OBJECT COLLECTION.

Collections can have the same number =⇒ numbers.
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Collections can be compared =⇒ greater/lesser.
There is a smallest collection =⇒ ONE.
Putting collections together =⇒ addition.

The purpose of this talk is not a discussion of the use of conceptual metaphors in
elementary mathematics, but in the use of the language of metaphor as a tool in the
history of mathematics and science.

Some Claims for Mathematics

1) Higher mathematics employs conceptual metaphors whose source domains are found
in more elementary mathematics.

2) Metaphors do not provide a perfect matching of domains. Where a metaphor fails,
new metaphors are needed, and here is where interesting mathematics is born.

3) It is possible to “follow the metaphors” in order to fashion a history of topics in
mathematics.

Let’s consider a scientific example of ‘following the metaphor’ that is somewhat
naive, but illustrates the idea.

ATOMS ARE DISCRETE, INDIVISIBLE UNITS OF MATTER
• Matter consists of collections of atoms. Atoms consist of units of air, earth, fire or
water (6th century India, 5th century Greece).

The search for what atoms might consist of led to chemistry, elements characterized
by the mixture of the elements they were made from.

• Atoms of one type appear in a constant proportion to atoms of another type in a
substance.

This line of study led eventually to the periodic table of Mendeleev.

• But the atom is not of one substance, but has electrons (J.J. Thomson, 1897).
This does not mean that atoms are not indivisible, but may consist of parts, unified

as a whole.

• The atom is like a plum pudding with electrons the raisins in a pudding of positive
charge (the Thomson atom).
• The nucleus is indivisible with electrons flying around it. The atom is like a solar
system (the Rutherford atom, 1909).
• From the view of quantum theory, electrons inhabit atomic orbital zones, and the
atom is like a nucleus surrounded by clouds of probability of the location of electrons
(the Bohr atom 1913).

Modern chemistry can be explained in this manner.

• Atoms can be split (1938, Hahn, Meitner, Frisch).
• Atoms consists of particles that are discrete, indivisible units of matter.

Examples from Mathematics
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POLYNOMIALS ARE INTEGERS.

The divisibility properties of polynomials are studied as if polynomials are integers.
Hence we can talk about irreducible polynomials (prime numbers), greatest common
divisors of polynomials (gcd of integers), and results like Bezout’s formula for polyno-
mials.

GROUPS ARE COLLECTIONS OF MATRICES.

The fact that matrices are transformations, collections of invertible matrices can
be identified as groups. The invariants of matrices, such as, determinants, traces, etc.
become tools with which to study elements of groups. Thus we get representation
theory.

FUNCTIONS ARE REAL NUMBERS.

Just as real numbers are limits of sequences of rational numbers, so too, continuous
functions (on [01]) are limits of polynomial functions. The theory of limits for real
numbers can be made the source domain for a mapping to metric spaces, spaces of
functions, etc. where the metaphor generates questions, provides potential arguments,
and leads to new results.

ANALYSIS IS ARITHMETIC.

How do we manage the theory of limits? By turning questions about limits into
questions about arithmetic. Thus the ε − δ definition of limits is a route to secure
foundations for the theory of limits through the security of arithmetic.

SPACES OF FUNCTIONS ARE VECTOR SPACES.

Real-valued functions on a fixed domain may be added, subtracted, and multiplied
by a scalar. The result of the metaphor is an approach to finding results about functions
that are modeled on the behavior of vectors in a vector space, including representations
with respect to certain restricted forms, kernels and images for linear transformations,
etc.

Case study: Solving equations
• Ancient cultures.

SOLVING EQUATIONS IS FOLLOWING AN ALGORITHM
The earliest records of solutions to algebraic problems can be found in Egyptian

and Babylonian texts. These include problems of a computational sort. The notion
of a solution is called the method of false position: An algorithm is proposed for a
convenient value, then the algorithm can be expected to be carried out the same way for
the relevant value. This has the appearance of generality, and of algorithmic generality.
The solution fits the purpose—when faced with an analogous problem, carry out this
example to obtain a solution.

• Euclid
SOLVING EQUATIONS IS CONSTRUCTING AN APPROPRIATE LENGTH
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“They had Book II of the Elements, which is geometric algebra and served much
the same purpose as does our symbolic algebra.” (Boyer) This book was studied care-
fully by Newton and expanded by him. The notion of a solution of an algebraic rela-
tion among lengths is a geometric construction demonstrating the relation for arbitrary
lengths.

• Diophantus of Alexandria (∼210–285 C.E.)
SOLVING EQUATIONS IS FINDING THE RATIONAL NUMBER THROUGH A PROCESS

Diophantus treated problems of a similar nature to the problems of the Egyptians
and Babylonians. His main contribution was a symbolism, clumsy but systematic.
Only positive rational solutions were admitted to his problems. His methods of solution
were ingenious, and indicate deep understanding. However, they were presented in the
same manner at the Rhind papyrus—a particular example was described, and a method
for solution in this case described. The general cases were found by following the
algorithm.

• Al-Khwārizmı̄ (9th century C.E.), Omar Khayyám (c. 10501123)
SOLVING EQUATIONS IS PART OF A SYSTEMATIC FAMILY OF PROCESSES

Al-jabr wa’l muqabalah
“Al-Khwarizmi’s text can be seen to be distinct not only from the Babylonian

tablets, but also from Diophantus’ Arithmetica. It no longer concerns a series of prob-
lems to be resolved, but an exposition which starts with primitive terms in which the
combinations must give all possible prototypes for equations, which henceforward ex-
plicitly constitute the true object of study. On the other hand, the idea of an equation for
its own sake appears from the beginning and, one could say, in a generic manner, inso-
far as it does not simply emerge in the course of solving a problem, but is specifically
called on to define an infinite class of problems.” (R. Rashed and A. Armstrong)

Solving an algebraic problem becomes an independent activity. Al-Khārizmı̄ sought
solutions to general quadratics in the pursuit of solutions to inheritance problems and
astronomical problems.

For Khayyám, cubic equations where solved by intersecting conics. Geometric
algebra used to find solutions to classes of algebraic problems.

• Del Ferro (1465–1526), Cardano (1501–1576), Tartaglia (1499–1557), Bombelli
(∼1526–1572)

SOLVING EQUATIONS IS REDUCTION TO GENERAL KNOWN FORMULAS
Solution to cubic equations remained geometric although general cases could be

stated without geometry. The general solutions to the cubic and the biquadratic are due
to the Italian mathematicians of the 16th century.

If x3 + px+ q = 0, then one solution is given by x1 where
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• Francois Viète (1540–1603)
SOLVING EQUATIONS IS A MIX OF FORMULAS AND GEOMETRY
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Introduced a “new algebra” in which algebra applied to geometry while geomet-
rical magnitude and number were distinct (Bos). Inspired by Diophantus who had
introduced the ‘unkonwn.’

“Finally the analytic are, endowed, at last, with its three forms of zetetics, poristics
and exegetics, claims for itself the greatest problem of all, which is TO LEAVE NO
PROBLEM UNSOLVED.”

Algebra is the tool. Zetetics was the art of translating a problem into algebraic
equations. Poristics concerned techniques of transforming algebraic proportionalities
and equations. Exegetics is the art of deriving the arithmetical or geometrical solutions
from the equations supplied by zetetics, and if necessary, transformed to amenable
forms by poristics. (Bos) Letters used for variables (not the first such use, but the most
influential).
• René Descartes (1596–1650)

SOLVING EQUATIONS IS THE REDUCTION TO CURVES OF ALGEBRAIC RELATIONS
Although not directly influenced by Viète, Descartes put forth a vision of the solu-

tion of algebraic equations that unified the algebraic and geometric approaches. Key
insights include his recognition that introduction of a unit allowed all powers of quanti-
ties to be interpreted as lengths. This leads to our notation of powers xn. Furthermore,
all problems concern quantity. Geometry then becomes the tool in algebra and in the
science that is reduced to algebra. A solution to a problem is a geometric diagram
leading to the length representing the solution.
• Carl-Friedrich Gauss (1777–1865)

SOLVING EQUATIONS IS ALWAYS POSSIBLE OVER THE COMPLEX NUMBERS
Many directions come together in Gauss’s work. In particular, some ancient prob-

lems were revealed to find their solutions in algebra. I am thinking of the constructibil-
ity of regular polygons, related by Gauss to cyclotomic polynomials, whose solutions
were found to have structure relating to the constructibility. Gauss also proved the Fun-
damental Theorem of Algebra, that every polynomial, real or complex, can be factored
into linear factors over the field of complex numbers. He gave four proofs. The proofs
range over geometric algebraic, and analytic insights. A solution to a polynomial equa-
tion in Gauss’s hands is a complex number.
• Niels Henrik Abel (1802–1829), Evariste Galois (1811–1832)

SOLVING EQUATIONS IS KNOWING THE SYMMETRIES OF THE ROOTS
To know that all of the roots of a polynomial are complex numbers, and to know

that the structure of the roots may reveal deeper connections, as Gauss had done for
cyclotomic polynomials, led Galois and Abel to investigate all of the roots in as small
a field as possible containing the rational numbers. By focusing on the fields, and their
transformations, the symmetries of the roots emerge, the Galois group. In this way,
solvability of an algebraic equation in terms of the coefficients becomes a question of
the properties of a group.

Possible historical projects:

CONTINUITY

GEOMETRY

APPLIED MATHEMATICS
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