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Abstract
We show that on any Poisson-Lie group, the effect of the dressing vector fields on volume
forms generates a class on Poisson cohomology. The comparison with the modular class give
rise to a complet Poisson vector field related to the modular group.
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I Introduction

Recall that [1] a Poisson-Lie group (G,P ) is a Lie group endowed with a Poisson structure
such that the multiplication G×G −→ G is a Poisson map, where G×G carries the Poisson
product structure. The Poisson bivector field is said to be multiplicative and satisfies, for any
x, y ∈ G

Pxy = lx∗Py + ry∗Px,

where lx∗ (resp.ry∗) denotes the tangent map of the left translation by x in G (resp. the right
translation by y inG). Let g be a lie algebra ofG and g∗ its dual. Denote by λ : g∗ −→ X(G)

the infinitesimal dressing action, i.e for any ξ ∈ g∗, λ(ξ) = i
ξ̃
P (see [3] and [4]), where ξ̃ is

the left-invariant 1-form on G with value ξ at e and i
ξ̃
P denotes the interior product of P

by ξ̃. Thus C∞(G) has the structure of g∗−module, defined by ξ · f = λ(ξ)(f ), f ∈ C∞(G),
ξ ∈ g∗.
In this work we study the effect of the dressing vector fields on the volume form, by analogy
with the construction of the moduler vector field. Precisely if we assume that G is oriented,
one choose any volume form Ω and computes its Lie derivative along dressing vector fields.
This leads to a unique 1-cocycle µΩ of g∗ with values in g∗−module C∞(G), such that :

Lλ(α)Ω = µΩ(α)Ω.

One calls SΩ(x) = lx∗µ
∗
Ω(x) for x ∈ G the dressing modular vector field of the Poisson

Lie group (G,P ) relative to Ω. The field SΩ is Poisson and defines a class [SP ] ∈ H1
P (G)

independent of Ω. We remark that the difference between the modular field and the dressing
modular field is independent of the chosen volume form and defines a Poisson vector field
XP . We show that this field is multiplicative and then generates a one parameter subgroup
of Aut(G,P ). We ending with an example where the class [XP ] is not trivial and then the
modular class and the dressing modular class are different.

II The dressing modular field

Let Ω be a volume form on G. For any α ∈ g∗, Lλ(α)Ω is a maximal form,
then there exists a map µΩ such that :

µΩ : g∗ −→ C∞(G)

α 7−→ divΩ(λ(α)) =
Lλ(α)Ω

Ω
.

Let µ∗
Ω : G −→ g the dual map of µΩ defined by

∀ξ ∈ g∗, < µ∗
Ω(x), ξ >= µΩ(ξ)(x).

definition

We call dressing modular field, the vector field SΩ associated to

Ω, defined by

SΩ(x) = lx∗µ
∗
Ω(x), x ∈ G.

This vector field has the following propriety :

Proposition I

1.The map µΩ is a 1-cocycle of g∗ with values in C∞(G).i.e.

µΩ([ξ, η]∗) = ξ.µΩ(η)− η.µΩ(ξ), ξ, η ∈ g∗.

In particular the field SΩ is Poisson. i.e. LSΩP = 0

2.The field SΩ with respect to different volume forms differ for a

hamiltonian vector field. i.e.

SfΩ = SΩ − Xln(|f |) ∀f ∈ C∞(G). (1)

Remark and Fact

–The vector field SΩ defines a class [SP ] ∈ H1
P (G), This class is

an obstruction to the existence of an invariant volume form

by dressing field. Indeed it is clear that if Lλ(αi)Ω0 = 0 of

i = 1, · · · , n, the class [SP ] is zero. Suppose that [SP ] = 0

one chooses any volume form Ω. There is thus a function f

such that SΩ = Xf . From (1), we have

Se−fΩ = SΩ + X−f = o,

the volume form e−fΩ verifies the required property.

–As shown in [4], the operator RΩ : f 7−→ divΩXf is a derivation

and hence a vector field called the modular vector field ofG with

respect to the volume form, i.e RfΩ = RΩ − Xln(|f |). From (1)

we have

RfΩ − SfΩ = RΩ − SΩ. (2)

III Relation between [SP ] and the modular class

Theorem I

Let (G,P ) be a connected Poisson-Lie group. Let (Xi)1≤i≤n be

a basis of g and denote by (αi)1≤i≤n its dual basis, the Poisson

tensor P can be written P =
∑

i<j PijX̃i ∧ X̃j, here X̃ is the

left-invariant vector field associated in X . We have

Rω − Sω =
∑

i<j

Pij[X̃j, X̃i],

for any volume form ω.

Let ν : g∗ −→ C∞(G) be the linear map given by the pairing

between P and δ(ξ̃), i.e

ν(ξ) =< P, δ(ξ̃) >,

where δ is the transpose map of the Lie bracket on g. Let ν∗ :

G −→ g be the dual map of ν. More precisely, ν∗ is defined by

< ν∗(g), α >= ν(α)(g) =< lg−1P (g), δ(α) > α ∈ g∗.

Proposition II

1.Denote byXP the vector fiel defined byXP (g) = lgν
∗(g). Then

XP = Rω − Sω,

for any volume form ω on G.

2.The vector field XP is multiplicative. In particular, it is a com-

plet vector field.

Remarks

1. Let (G,P ) be an exact Poisson-Lie, i.e

P = r̃ − r̂

for some r ∈ ∧2g, solution of the Yang-Baxter equation. It

follows

Rω − Sω = L̃(r)− L̂(r),

for any volume form ω on G, where L : ∧2g −→ g is the linear

operator defined by L(X ∧ Y ) = [X, Y ] and, as usual, L̃(r)

(resp. L̂(r)) denotes the left-invariant (resp right-invariant )

tensor field associated to L(r).

2. If [SP ] = 0. The modular class is represented by the complete

vector filedXP . Then (G,P ) admits a modular automorphisme

group (see [5]).

IV Sketch of proof of the Theorem I

The Hamiltonian vector field associated to f ∈ C∞(G) is given by

Xf =

n∑

j=1

(

n∑

i=1

PijX̃i(f ))X̃j,

then

Rω(f ) = divω

n∑

j=1

(

n∑

i=1

PijX̃i(f ))X̃j

=

n∑

j=1

(

n∑

i=1

X̃j(PijX̃i(f )) +

n∑

j=1

(

n∑

i=1

PijX̃i(f ))divωX̃j.

The dressing vector fields corresponding to αi is given by λ(αi) =
∑n

j=1PijX̃j.
We have

Sω(f ) =

n∑

i=1

divω(λ(αi))X̃i(f )

=

n∑

i=1

(

n∑

j=1

divωPijX̃j)X̃i(f )

=

n∑

i=1

(

n∑

j=1

X̃j(Pij))X̃i(f ) +

n∑

j=1

(

n∑

i=1

PijX̃i(f ))divωX̃j,

and hence

Rω(f )− Sω(f ) =

n∑

j=1

(

n∑

i=1

X̃j(PijX̃i(f ))−

n∑

i=1

(

n∑

j=1

X̃j(Pij))X̃i(f )

=

n∑

j=1

n∑

i=1

PijX̃jX̃i(f )

=
∑

i<j

Pij(X̃jX̃i − X̃iX̃j)(f ),

which completes the proof.

V Example

In the following example, the class [XP ] is not trivial and then the modular class is different
from the dressing modular class in general.
Denote by SU(2), the special unitary group defined by :

SU(2) =

{(
α β

−β α

)
/ α, β ∈ C, αα + ββ = 1

}
.

Let α = x + iy and β = z + it, SU(2) can be identified with the unit sphere S3 in R4.
The Lie bracket on the Lie algebra su(2) is defined by :

[Z,X ] = 2Y ; [Z, Y ] = −2X ; [X,Y ] = 2Z.

The left-invariant vector fields associated with this basis are :

X̃ = −y∂x + x∂y + t∂z − z∂t

Ỹ = −z∂x − t∂y + x∂z + y∂t

Z̃ = −t∂x + z∂y − y∂z + x∂t,

and the Poisson Lie structures on SU(2) are given by

P (x, y, z, t) = 2k(xz − yt)Ỹ ∧ Z̃ − 2k(xy + zt)Z̃ ∧ X̃ + 2k(y2 + z2)X̃ ∧ Ỹ , k ∈ R∗
+.

The symplectic leaves on SU(2) are spheres given by

λy + µz = 0 (λ, µ ∈ R ; (λ, µ) 6= (0, 0)).

We obtain
Xp = 4ky∂z − 4kz∂y.

The orbits of XP are circles with center located on the singular locus : x2 + t2 = 1 of P
and transverse to symplectic leaves (see picture), so XP defines a nontrivial class in Poisson
cohomology (see [2]).
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