On Pre-Hilbert Noncommutative Jordan Algebras Satisfying $||x^2|| = ||x||^2$

A. $Moutassim^{(1)}$, M. Benslimane⁽²⁾

(1) CRMEF Settat, Maroc(2) Université de Tétouan, Maroc.

Abstract

Let A be a real or complex algebra. Assuming that a vector space A is endowed with a pre-Hilbert norm $\|.\|$ satisfying $\|x^2\| = \|x\|^2$ for all $x \in A$. We prove that A is finite dimensional in the following cases : 1. A is a real weakly alternative algebra without divisors of zero. 2. A is a complex powers associative algebra. 3. A is a complex flexible algebraic algebra. In the present paper we extend the above results to more general situation. Indeed, we prove that, if A is a real or complex pre-Hilbert algebra satisfying $||x^2|| \leq ||x||^2$ for all $x \in A$. Then A is finite dimensional in the following cases :

- 1. A is a real weakly alternative algebra without divisors of zero and satisfying $||x^2|| = ||x||^2$ for all $x \in A$.
- 2. A is a real weakly alternative algebra without divisors of zero and containing a nonzero central element a such that ||ax|| = ||a|| ||x|| for all $x \in A$.
- 3. A is a complex powers associative algebra satisfying $||x^2|| = ||x||^2$ for all $x \in A$.

ix) B is termed normed (resp. absolute valued) if it is endowed with a space norm : $\|.\|$ such that $\|xy\| \le \|x\|\|y\|$ (resp. $\|xy\| = \|x\|\|y\|$), for all $x, y \in B$.

The most natural examples of absolute valued algebras are \mathbb{R} , \mathbb{C} , \mathbb{C} , \mathbb{H} (the algebra of Hamilton quaternion) and \mathbb{O} (the algebra of Cayley numbers), with norms equal to their usual absolute values. The algebra *

 \mathbb{C} , obtained by replacing the product of \mathbb{C} with the one defined by $x \circ y = x^*y^*$, where * means the standard involution of \mathbb{C} .

We have the following very known results :

Lemma 0.2 [5] Let A be a powers associative algebra over K and without divisors of zero. If e is a nonzero idempotent in A, then A has an identity element e.

4. A is a complex Jordan algebra.

In the first case A is isomorphic to \mathbb{R} , \mathbb{C} , \mathbb{H} or \mathbb{O} and A is isomorphic to \mathbb{C} in the last three cases. These last permits us to show that if A is a complex pre-Hilbert noncommutative Jordan algebra satisfying $||x^2|| =$ $||x||^2$ for all $x \in A$, then A is finite dimensional and is isomorphic to \mathbb{C} . Moreover we give an example of an infinite dimensional real pre-Hilbert Jordan algebra with divisors of zero and satisfying $||x^2|| = ||x||^2$ for all $x \in A$.

Introduction

Let A be a real or complex algebra not necessarily associative or finite dimensional. Assuming that a vector space A is endowed with a pre-Hilbert norm $\|.\|$ satisfying $\|x^2\| \leq \|x\|^2$ for all $x \in A$. B. Zalar (1995, [6]) proved that :

1. If A is a real alternative algebra containing a unit element e such that ||e|| = 1, then A is finite dimensional and is isomorphic to $\mathbb{R}, \mathbb{C}, \mathbb{H}$ or \mathbb{O} .

2. If A is a real associative algebra satisfying $||x^2|| = ||x||^2$, then A is finite dimensional and is isomorphic to \mathbb{R}, \mathbb{C} or \mathbb{H} .

3. If A is a complex normed algebra containing a unit element e such that ||e|| = 1, then A is finite dimensional and is isomorphic to \mathbb{C} .

These results were extended respectively to the following cases :

1. If A is a real alternative algebra containing a nonzero central element a such that ||ax|| = ||a|| ||x||, then A is finite dimensional and is

In the first two cases A is isomorphic to $\mathbb{R}, \mathbb{C}, \mathbb{H}$ or \mathbb{O} and A is isomorphic to \mathbb{C} in the last two cases. This last allows us to show that if A is a complex pre-Hilbert noncommutative Jordan algebra (resp, flexible algebraic algebra or Jordan algebra) satisfying $||x^2|| = ||x||^2$ for all $x \in A$, then A is finite dimensional and is isomorphic to \mathbb{C} . Moreover we give an example of an infinite dimensional real pre-Hilbert Jordan algebra (weakly alternative algebra) with divisors of zero and satisfying $||x^2|| = ||x||^2$ for all $x \in A$.

Part 1 : Notation and preliminary results

Definitions 0.1 Let B be an arbitrary algebra and K is a field of characteristic not 2.

i) B is called alternative if it is satisfied the identities (y, x, x) = 0and (x, x, y) = 0 (where (., ., .) means associator), for all $x, y \in B$.

ii) B is called a powers associative if, for every x in B, the subalgebra B(x) generated by x is associative.

iii) B is called flexible if (x, y, x) = 0 for all $x, y \in B$.

iv) B is called a Jordan algebra if it is commutative and satisfied the Jordan identity : (J) $(x^2, y, x) = 0$ for all $x, y \in B$.

v) B is called a noncommutative Jordan algebra if it is flexible and satisfied the Jordan identity (J).

vi) B is called weakly alternative if it is a noncommutative Jordan algebra and satisfied the identity (x, x, [x, y]) = 0 (where [.,.] means commutator). An alternative algebra or Jordan algebra is **Proposition 0.3** [1] If $\{x_i\}$ is a set of commuting elements in a flexible algebra A over K, then the subalgebra generated by the $\{x_i\}$ is commutative.

Proposition 0.4 [2] Let A be a noncommutative Jordan algebra over K, then A is a powers associative algebra.

Theorem 0.5 [5] The subalgebra generated by any two elements of an alternative algebra A is associative.

Theorem 0.6 [6] Let A a real pre-Hilbert associative algebra satisfying $||x^2|| = ||x||^2$ for all $x \in A$. Then A is finite dimensional and is isomorphic to \mathbb{R}, \mathbb{C} or \mathbb{H} .

Theorem 0.7 [4] Let A be a real pre-Hilbert commutative algebra without divisors of zero and satisfying $||x^2|| \le ||x||^2$ for all $x \in A$. Suppose that A containing a nonzero central element a such that ||ax|| = ||a|| ||x|| for all $x \in A$. Then A is isomorphic to \mathbb{R}, \mathbb{C} or $\overset{*}{\mathbb{C}}$. **Theorem 0.8** [6] Let A be a real proof Hilbert alternative algebra

Theorem 0.8 [6] Let A be a real pre-Hilbert alternative algebra with identity e. Suppose that $||x^2|| \leq ||x||^2$ for all $x \in A$ and ||e|| = 1. Then A is isomorphic to \mathbb{R} , \mathbb{C} , \mathbb{H} or \mathbb{O} .

Part 2 : Real pre-Hilbert weakly alternative algebras

We have the following importing results :

Theorem 0.9 Let A be a real pre-Hilbert weakly alternative algebra with identity e and without divisors of zero. Suppose that $||x^2|| \leq$

- isomorphic to $\mathbb{R}, \mathbb{C}, \mathbb{H}$ or \mathbb{O} . (2008, [4])
- 2. If A is a real alternative algebra satisfying $||x^2|| = ||x||^2$, then A is finite dimensional and is isomorphic to \mathbb{R}, \mathbb{C} or \mathbb{H} . (2008, [4])
- 3. If A is a complex normed algebra without divisors of zero and containing an invertible element v such that ||vx|| = ||xv|| = ||v|| ||x||, then A is finite dimensional and is isomorphic to \mathbb{C} . (2010, [3])
- evidently weakly alternative.
- vii) We say that B is algebraic if, for every x in B, the subalgebra B(x) of B generated by x is finite dimensional.
- viii) B is called a pre-Hilbert algebra if it is endowed with a space norm comes from an inner product (.|.).

 $||x||^2$ for all $x \in A$ and ||e|| = 1. Then A is finite dimensional and is isomorphic to \mathbb{R} , \mathbb{C} , \mathbb{H} or \mathbb{O} .

Proof. It is sufficient to prove that A is an alternative algebra, the result ensues then of the Theorem (0.8).

Theorem 0.10 Let A be a real pre-Hilbert weakly alternative algebra without divisors of zero. Suppose that $||x^2|| = ||x||^2$ for all $x \in A$, then A is finite dimensional and is isomorphic to \mathbb{R} , \mathbb{C} , \mathbb{H} or \mathbb{O} .

Proof. A is a powers associative algebra (Proposition (0.4)) then the subalgebra A(x) of A, generated by $x \in A$, is associative and verifying the conditions of the Theorem (0.6). Therefore A(x) is isomorphic to \mathbb{R} or \mathbb{C} , thus there is a nonzero idempotent $e \in A$ such that xe = ex = x, that is, A is a unital algebra of unit e (Lemma (0.2)). So the result is a consequence of the Theorem (0.9).

Corollary 0.11 Let A be a real pre-Hilbert Jordan algebra without divisors of zero. Suppose that $||x^2|| = ||x||^2$ for all $x \in A$, then A is finite dimensional and is isomorphic to \mathbb{R} or \mathbb{C} .

We give an extension of the Theorem (0.9)

Theorem 0.12 Let A be a real pre-Hilbert weakly alternative algebra without divisors of zero and satisfying $||x^2|| \leq ||x||^2$ for all $x \in A$. Suppose that A containing a nonzero central element a such that ||ax|| = ||a|| ||x|| for all $x \in A$. Then A is finite dimensional and is isomorphic to \mathbb{R} , \mathbb{C} , \mathbb{H} or \mathbb{O} . Part 3 : Complex pre-Hilbert noncommutative Jordan algebras satisfying $||x^2|| = ||x||^2$

We need the following results :

Proposition 0.14 [3] Let A be a complex pre-Hilbert commutative associative (resp, commutative algebraic) algebra and satisfying $||x^2|| = ||x||^2$ for all $x \in A$. Then A is finite dimensional and is isomorphic to \mathbb{C} .

Theorem 0.15 [3] Let A be a complex pre-Hilbert algebra with identity e. Suppose that $||x^2|| = ||x||^2$ for all $x \in A$. Then A is finite dimensional and is isomorphic to \mathbb{C} .

We have the following importing results :

Lemma 0.16 Let A be a complex pre-Hilbert alternative (resp, commutative) algebra satisfying $||x^2|| = ||x||^2$ for all $x \in A$. Then A has nonzero divisors.

Proof. Let $a \in A$ be a nonzero element, according to Proposition (0.3) and Lemma (0.16), the subalgebra A(a) of A is commutative, algebraic and without divisors of zero. Thus A(a) is isomorphic to \mathbb{C} (Proposition (0.14)). This implies that A is a powers associative algebra, then the result is a consequence of the Theorem (0.18).

We state now the main Theorem :

Theorem 0.20 Let A be a complex pre-Hilbert non commutative Jordan algebra satisfying $||x^2|| = ||x||^2$ for all $x \in A$, then A is finite dimensional and is isomorphic to \mathbb{C} . **Proof.** The Proposition (0.4) implies that A is a powers associative

algebra, hence A is isomorphic to \mathbb{C} (Theorem (0.18)).

Corollary 0.21 Let A be a complex pre-Hilbert weakly alternative (resp, Jordan) algebra satisfying $||x^2|| = ||x||^2$ for all $x \in A$, then A is finite dimensional and is isomorphic to \mathbb{C} .

Références

Proof. Let $x \in A$, the subalgebra A(a, x) of A generated by $\{x, a\}$ is commutative. The Theorem (0.7) implies that $||x^2|| = ||x||^2$, thus the result is a consequence of the Theorem (0.10).

Remark 0.13 In the previous results the hypothesis without divisors of zero is necessary. The following example proves it :

Let H be an infinite dimensional real Hilbert space, we define the multiplication on the vector space $A = \mathbb{R} \oplus H$ by : $(\alpha + x)(\beta + y) = (\alpha\beta - (x|y)) + (\alpha y + \beta x)$. And the scalar product by : $((\alpha + x)|(\beta + y)) = \alpha\beta + (x|y)$. Then A is an infinite dimensional real pre-Hilbert Jordan (weakly alternative) algebra with identity satisfying $||a^2|| = ||a||^2$ and has a zero divisors. **Theorem 0.17** Let A be a complex pre-Hilbert alternative algebra satisfying $||x^2|| = ||x||^2$ for all $x \in A$, then A is finite dimensional and is isomorphic to \mathbb{C} .

Proof. Let $a \in A$, the subalgebra A(a) of A generated by a is commutative and associative (Theorem (0.5)). The Proposition (0.14) prove that A(a) is isomorphic to \mathbb{C} , then there exist a nonzero idempotent $f \in A$. According to the Theorem (0.15) it is sufficient to prove that f is a unit element of A. Let $b \in A$, we have f(b - fb) = 0and (b - bf)f = 0. As A is without divisors of zero (Lemma (0.16)), then fb = bf = b. Thus A is finite dimensional and is isomorphic to \mathbb{C} .

Theorem 0.18 Let A be a complex pre-Hilbert powers associative algebra satisfying $||x^2|| = ||x||^2$ for all $x \in A$, then A is finite dimensional and is isomorphic to \mathbb{C} .

Theorem 0.19 Let A be a complex pre-Hilbert flexible algebraic algebra satisfying $||x^2|| = ||x||^2$ for all $x \in A$, then A is finite dimensional and is isomorphic to \mathbb{C} . [1] G.M. Benkart. D. J. Britten and J. M. Osborn, "Real Flexible Division Algebras". Can. J. Math. Vol. XXXIV, No. 3, (1982), 550-588.

[2] **H. Braun and M. Koecher**, "Jordan algebren", Springer-Verlag (1966).

[3] M. R. Hilali, A. Moutassim et A. Rochdi, C-algèbres Normées Préhilbertiennes Vérifiant $||x^2|| = ||x||^2$. Advances in Applied Clifford Algebras 20 (2010), 33-41.

[4] A. Moutassim et A. Rochdi, Sur les algèbres préhilbertiennes vérifiant $||x^2|| \leq ||x||^2$. Advances in Applied Clifford Algebras 18 (2008), 269-278.

[5] **D. Shafer**,

An introduction to nonassociative algebras". Academic Press (1966).

[6] **B. Zalar**,

On Hilbert spaces with unital multiplication". Proc. Amer. Math. Soc. 123 (1995), 1497-1501.