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Abstract

It is shown that if a bounded linear operator T or its adjoint T ∗ has the
single-valued extension property, then generalized Weyl’s theorem and
generalized Browder’s theorem hold for f (T ) for every f ∈ H(σ(T )).
We establish the spectral theorem for the B-Weyl spectrum and we
give necessary and sufficient conditions for such operator T to obey
generalized Weyl’s theorem.

Introduction and denotations

Let X denote an infinite-dimensional complex Banach space and L(X)
the unital (with unit the identity operator, I , on X) Banach algebra of
bounded linear operators acting onX . For an operator T ∈ L(X) write
T ∗ for its adjoint, N (T ) for its null space, R(T ) for its range, σ(T ) for
its spectrum, σsu(T ) for its surjective spectrum, σa(T ) for its approxi-
mate point spectrum, α(T ) for its nullity and β(T ) for its defect. T is
called an upper semi-Fredholm (resp. a lower semi-Fredholm) operator
if the range R(T ) of T is closed and α(T ) < ∞ (resp. β(T ) < ∞).
A semi-Fredholm operator is an upper or a lower semi-Fredholm op-
erator. If both α(T ) and β(T ) are finite, then T is called a Fredholm
operator and the index of T is defined by ind(T ) = α(T )− β(T ). For
a T -invariant closed linear subspace Y of X , let T | Y denote the
operator given by the restriction of T to Y .
For a bounded linear operator T and for each integer n, define Tn to
be the restriction of T to R(Tn) viewed as a map from R(Tn) into
itself. If for some integer n the range R(Tn) is closed and Tn = T |
R(Tn) is a Fredholm (resp. semi-Fredholm) operator, then T is called
a B-Fredholm (resp. semi-B-Fredholm) operator. In this case, from [?,
Proposition 2.1] Tm is a Fredholm operator and ind(Tm) = ind(Tn)
for each m ≥ n. This permits to define the index of a B-Fredholm
operator T as the index of the Fredholm operator Tn where, n is any
integer such that R(Tn) is closed and Tn is a Fredholm operator. It
is shown (see [?, Theorem 3.2]) that if S and T are two commuting
B-Fredholm operators then the product ST is a B-Fredholm operator
and ind(ST ) = ind(S) + ind(T ). Let BF (X) be the class of all B-
Fredholm operators and ρBF (X) = {λ ∈ C : T − λI ∈ BF (X)} be
the B-Fredholm resolvent of T and let σBF (T ) = C \ ρBF (T ) be the
B-Fredholm spectrum of T . The class BF (X) has been studied by M.
Berkani (see [?, Theorem 2.7]) where it was shown that an operator
T ∈ L(X) is a B-Fredholm operator if and only if T = S0⊕S1 where

S0 is a Fredholm operator and S1 is a nilpotent one. He also proved
that σBF (T ) is a closed subset of C contained in the spectrum σ(T )
and showed that the spectral mapping theorem holds for σBF (T ), that
is, f (σBF (T )) = σBF (f (T )) for any complex-valued analytic function
on a neighborhood of σ(T ) (see [?, Theorem 3.4]). From [?] we recall
that for T ∈ L(X), the ascent a(T ) and the descent d(T ) are given by

a(T ) = inf{n ≥ 0 : N (Tn+1) = N (Tn)}

and
d(T ) = inf{n ≥ 0 : R(Tn) = R(Tn+1)}

respectively, where the infinum over the emptyset is taken to be ∞. If
a(T ) and d(T ) are both finite then a(T ) = d(T ) = p, X = N (T p) ⊕
R(T p) and R(T p) is closed.
An operator T ∈ L(X) is called semi-regular if R(T ) is closed and
N (T ) ⊆ R(Tn) for every n ∈ N. The semi-regular resolvent is the
subset of the complex field defined by s-reg(T ) = {λ ∈ C : T −
λI is semi-regular}, we note that s-reg(T ) = s-reg(T ∗) is an open
subset of C. The semi-B-Fredholm resolvent of T is the subset of the
complex field given by ρSBF = {λ ∈ C : T−λI is semi-B-Fredholm}.
As a consequence of [?, Théorème 2.7], we obtain the following result.

Proposition 1.1.
Let T ∈ L(X).
(i) If T has the SVEP then s-reg(T ) = ρa(T ).
(ii) If T ∗ has the SVEP then s-reg(T ) = ρsu(T ).

We recall that an operator T ∈ L(X) has the single-valued extension
property, abbreviated SVEP, if, for every open set U ⊆ C, the only
analytic solution f : U −→ X of the equation (T − λI)f (λ) = 0 for
all λ ∈ U is the zero function on U . We will denote by H(σ(T )) the
set of all complex-valued functions which are analytic on an open set
containing σ(T ).

For our investigations we need the following result.

Proposition 1.2.
Let T ∈ L(X).
(i) If T has the SVEP then ind(T − λI) ≤ 0 for every λ ∈
ρSBF (T ).
(ii) If T ∗ has the SVEP then ind(T − λI) ≥ 0 for every λ ∈
ρSBF (T ).

Proposition :

(i) Let λ ∈ ρSBF (T ), then there exists an integer p such that

(T | R(T − λI)p)− λI = (T − λI) | R(T − λI)p

is semi-Fredholm. From the Kato decomposition, there exists δ > 0
such that

{µ ∈ C : 0 < |µ− λ| < δ} ⊆ s-reg(T − λI | R(T − λI)p).

Since T has the SVEP, Proposition 1.1 implies that s-reg(T − λI |
R(T − λI)p) = ρap(T − λI | R(T − λI)p). Therefore, N ((T | R(T −
λI)p)−µI) = 0 and so ind(T−µI) = ind((T | R(T−λI)p)−µI) ≤ 0,
holding for 0 < |µ − λ| < δ. Thus, by the continuity of the index,
ind(T − λ) ≤ 0.
(ii) This is included in part (i) since ind(T ∗) = −ind(T ).

An operator T ∈ L(X) is said to be Weyl if it is Fredholm of index
zero and Browder if it is Fredholm of finite ascent and descent. The
essentiel spectrum σe(T ), the Weyl spectrum σw(T ) and the Browder
spectrum σb(T ) of T are defined by

σe(T ) = {λ ∈ C : T − λI is not Fredholm};

σw(T ) = {λ ∈ C : T − λI is not Weyl};

σb(T ) = {λ ∈ C : T − λI is not Browder}.

It is well known that σe(T ) ⊆ σw(T ) ⊆ σb(T ) ⊆ σ(T ).

An operator T ∈ L(X) is called B-Weyl if it is B-Fredholm of index
zero. The B-Weyl spectrum σBW (T ) of T is defined by

σBW (T ) = {λ ∈ C : T − λI is not B-Weyl}.

For a subset K of C, we shall write iso(K) for its isolated points. A
complex number λ is said to be Riesz point of T in L(X) if λ0 ∈
iso(σ(T )) and the spectral projection corresponding to the set {λ0}
has finite-dimensional range. The set of all Riesz points of T will be
denoted by Π0(T ). It is known that if T ∈ L(X) and λ ∈ σ(T )
then λ ∈ Π0(T ) if and only if T − λI is Fredholm of finite ascent
and descent (see [?]). Consequently σb(T ) = σ(T ) \ Π0(T ). Let Π(T )
denote the set of all poles of the resolvent of T and E0(T ) = {λ ∈
C : λ ∈ iso(σ(T )), 0 < α(T − λI) < ∞}. For a normal operator
T acting on a Hilbert space H , Berkani [?, Theorem 4.5] showed that
σBW (T ) = σ(T ) \ E(T ) where E(T ) is the set of all eigenvalues of
T which are isolated in σ(T ). This result gives a generalization of the
classical Weyl’s theorem σw(T ) = σ(T ) \ E0(T ).

SVEP and Generalized Weyl’s theorem

The concept of Drazin invertibility plays an important role for the class
of B-Fredholm operators. From [?] we recall that, for an algebraA with
unit 1 we say that an element a ∈ A is Drazin invertible of degre k if
there is an element b of A such that akba = ak, bab = b and ab = ba.
The drazin spectrum of a ∈ A is defined by σD(a) = {λ ∈ C :
a − λ1 is not Drazin invertible}. In the case of A = L(X), it is well
known that T is Drazin invertible if and only if it has a finite ascent
and descent which is also equivalent to the fact that T = T0⊕T1 where
T0 is an invertible operator and T1 is a nilpotent one, see for instance
[?, Proposition 6] and [?, Corollary 2.2].

Recall that σw(T ) =
⋂
{σ(T +K) : K ∈ K(X)} where K(X) is the

class of all compact operators acting onX . It was proved in [?, Theorem
4.3] that for T ∈ L(X), σBW (T ) =

⋂
{σD(T + F ) : F ∈ F(X)}.

Let T ∈ L(X), we will say that :
(i) T satisfies Weyl’s theorem if σw(T ) = σ(T ) \ E0(T ).
(ii) T satisfies generalized Weyl’s theorem if σBW (T ) = σ(T ) \E(T ).
(iii) T satisfies Browder’s theorem if σw(T ) = σ(T ) \ Π0(T ).
(iv) T satisfies generalized Browder’s theorem if σBW (T ) = σ(T ) \
Π(T ).

Recall from [?] that if T ∈ L(X) satisfies generalized Weyl’s theo-
rem then it also satisfies Weyl’s theorem and if T satisfies generalized
Browder’s theorem then it satisfies Browder’s theorem.

We now turn to an another extension of the characterization of opera-
tors obeying Weyl’s theorem ([?, Theorem 4]).

Theorem 2.1. [?, Theorem 2.5]
If T ∈ L(X) then we have

(i) σBW (T ) ⊂ σ(T ) \ E(T ) if and only if E(T ) = Π(T ).
(ii) σBW (T ) ⊃ σ(T ) \ E(T ) if and only if σBW (T ) = σD(T ).

From this theorem we obtain immediately the following corollary.

Corollary 2.2.
Let T ∈ L(X), then T satisfies generalized Weyl’s theorem if

and only if σBW (T ) = σ(T ) \ Π(T ) and E(T ) = Π(T ).

Using a standard argument and the Riesz functional calculus, we obtain
the following result.

Proposition 2.3.
Let T ∈ L(X), then σBW (f (T )) ⊆ f (σBW (T )) for every f ∈
H(σ(T )).

Proposition : Let λ ∈ σBW (f (T )), then f (T )−λI is not a B-Weyl’s
operator. As σBW (f (T )) ⊆ σ(f (T )) = f (σ(T )), there exists µ ∈ σ(T )
such that λ = f (µ). We have f (z)−f (µ) = (z−µ)m(z−µ1)

m1 · · · (z−
µn)

mng(z) where g is a non vanishing analytic function on σ(T ). So
f (T )−f (µ)I = (T−µI)m(T−µ1I)

m1 · · · (T−µnI)
mng(T ) = f (T )−

λI . Since f (T )− λI is not a B-Weyl operator, and

ind(f (T )−f (µ)I) = m ind(T−µI)+m1ind(T−µ1I)+· · ·+mnind(T−µnI),

there exists β ∈ {µ, µ1, · · · , µn} such that T − βI is not a B-Weyl
operator and since f (β) = λ we get β ∈ σBW (T ).

The opposite inclusion does not hold in general. Furthermore if f is
injective on σBW (T ), the last inclusion becomes an equality.

The proof of the next result is similar to that one involving σw(T ) (see
[?, Theorem 3].

Theorem 2.4.
Let T ∈ L(X), if f ∈ H(σ(T )) is injective on σBW (T ) then

σBW (f (T )) = f (σBW (T )).

Let BW (X) be the class of T ∈ L(X) such that ind(T − λI) ≤ 0 for
all λ ∈ ρBF (T ) or ind(T − λI) ≥ 0 for all λ ∈ ρBF (T ). We recall
that hyponormals operators on a Hilbert space H lie in BW (H).

The following result shows that, for operators lying in the class
BW (X), the spectral mapping theorem for complex polynomials im-
plies the spectral mapping one for complex-valued analytic functions.
For its proof, we can repeat the argument used in [?, Theorem 2] word
for word ; we have only to replace Weyl operator by B-Weyl opera-
tor, Fredholm operator by B-Fredholm operator and Weyl spectrum
by B-Weyl spectrum.

Theorem 2.5.
For T ∈ L(X) the following assertions are equivalent :
(i) T ∈ BW (X).
(ii) σBW (f (T )) = f (σBW (T )) for all f ∈ H(σ(T )).
(iii) σBW (p(T )) = p(σBW (T )) for all complex polynomial p.

We are now in a position to show that SVEP implies the spectral
theorem for the B-Weyl spectrum.

Proposition 2.6.
If T or T ∗ has the SVEP, then f (σBW (T )) = σBW (f (T )) for

any f ∈ H(σ(T )).

Proposition : Let f ∈ H(σ(T )). If T or T ∗ has the SVEP, by
Proposition 1.2, T lies in BW (X) and Theorem 2.5 concludes the
proof.

Our next goal is to show that generalized Browder’s theorem is satisfied
for f (T ) whenever T or T ∗ has the single-valued extension property
and f ∈ H(σ(T )). To settle this, we use a characterization of the pole
of the resolvent in terms of of ascent and descent given in [?].

Theorem 2.7.
If T ∈ L(X) or its adjoint has the SVEP, then generalized Brow-

der’s theorem holds for f (T ) for every f ∈ H(σ(T )).


