SVEP AND GENERALIZED WEYL'S THEOREM

Babbah Adel, join work with M. Zohry

adel.groupe@gmail.com, zohry@uae.ma Faculty of Sciences, Univ. Tetouan, Maroc

Abstract

It is shown that if a bounded linear operator T or its adjoint T^* has the single-valued extension property, then generalized Weyl's theorem and generalized Browder's theorem hold for f(T) for every $f \in \mathcal{H}(\sigma(T))$. We establish the spectral theorem for the B-Weyl spectrum and we give necessary and sufficient conditions for such operator T to obey generalized Weyl's theorem.

Introduction and denotations

 S_0 is a Fredholm operator and S_1 is a nilpotent one. He also proved that $\sigma_{BF}(T)$ is a closed subset of \mathbb{C} contained in the spectrum $\sigma(T)$ and showed that the spectral mapping theorem holds for $\sigma_{BF}(T)$, that is, $f(\sigma_{BF}(T)) = \sigma_{BF}(f(T))$ for any complex-valued analytic function on a neighborhood of $\sigma(T)$ (see [?, Theorem 3.4]). From [?] we recall that for $T \in \mathcal{L}(X)$, the ascent a(T) and the descent d(T) are given by

 $a(T) = \inf\{n \ge 0 : N(T^{n+1}) = N(T^n)\}$

and

 $d(T) = \inf\{n \ge 0 : R(T^n) = R(T^{n+1})\}$

respectively, where the infinum over the emptyset is taken to be ∞ . If a(T) and d(T) are both finite then $a(T) = d(T) = p, X = N(T^p) \oplus$ $R(T^p)$ and $R(T^p)$ is closed. An operator $T \in \mathcal{L}(X)$ is called semi-regular if R(T) is closed and $N(T) \subseteq R(T^n)$ for every $n \in \mathbb{N}$. The semi-regular resolvent is the subset of the complex field defined by s-reg $(T) = \{\lambda \in \mathbb{C} : T - \}$ λI is semi-regular}, we note that s-reg(T) = s-reg (T^*) is an open subset of \mathbb{C} . The semi-B-Fredholm resolvent of T is the subset of the complex field given by $\rho_{SBF} = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is semi-B-Fredholm}\}.$ As a consequence of [?, Théorème 2.7], we obtain the following result.

Proposition :

(i) Let $\lambda \in \rho_{SBF}(T)$, then there exists an integer p such that

 $(T \mid R(T - \lambda I)^p) - \lambda I = (T - \lambda I) \mid R(T - \lambda I)^p$

is semi-Fredholm. From the Kato decomposition, there exists $\delta > 0$ such that

 $\{\mu \in \mathbb{C} : 0 < |\mu - \lambda| < \delta\} \subseteq \operatorname{s-reg}(T - \lambda I | R(T - \lambda I)^p).$

Since T has the SVEP, Proposition 1.1 implies that s-reg $(T - \lambda I \mid$ $R(T - \lambda I)^p) = \rho_{ap}(T - \lambda I \mid R(T - \lambda I)^p)$. Therefore, $N((T \mid R(T - \lambda I)^p))$. $\lambda I)^p - \mu I = 0$ and so $\operatorname{ind}(T - \mu I) = \operatorname{ind}((T \mid R(T - \lambda I)^p) - \mu I) \le 0$, holding for $0 < |\mu - \lambda| < \delta$. Thus, by the continuity of the index,

Let X denote an infinite-dimensional complex Banach space and $\mathcal{L}(X)$ the unital (with unit the identity operator, I, on X) Banach algebra of bounded linear operators acting on X. For an operator $T \in \mathcal{L}(X)$ write T^* for its adjoint, N(T) for its null space, R(T) for its range, $\sigma(T)$ for its spectrum, $\sigma_{su}(T)$ for its surjective spectrum, $\sigma_a(T)$ for its approximate point spectrum, $\alpha(T)$ for its nullity and $\beta(T)$ for its defect. T is called an upper semi-Fredholm (resp. a lower semi-Fredholm) operator if the range R(T) of T is closed and $\alpha(T) < \infty$ (resp. $\beta(T) < \infty$). A semi-Fredholm operator is an upper or a lower semi-Fredholm operator. If both $\alpha(T)$ and $\beta(T)$ are finite, then T is called a Fredholm operator and the index of T is defined by $\operatorname{ind}(T) = \alpha(T) - \beta(T)$. For a T-invariant closed linear subspace Y of X, let $T \mid Y$ denote the operator given by the restriction of T to Y.

For a bounded linear operator T and for each integer n, define T_n to be the restriction of T to $R(T^n)$ viewed as a map from $R(T^n)$ into itself. If for some integer n the range $R(T^n)$ is closed and $T_n = T$ $R(T^n)$ is a Fredholm (resp. semi-Fredholm) operator, then T is called a B-Fredholm (resp. semi-B-Fredholm) operator. In this case, from [?, Proposition 2.1] T_m is a Fredholm operator and $\operatorname{ind}(T_m) = \operatorname{ind}(T_n)$ for each $m \geq n$. This permits to define the index of a B-Fredholm operator T as the index of the Fredholm operator T_n where, n is any integer such that $R(T^n)$ is closed and T_n is a Fredholm operator. It is shown (see [?, Theorem 3.2]) that if S and T are two commuting B-Fredholm operators then the product ST is a B-Fredholm operator and $\operatorname{ind}(ST) = \operatorname{ind}(S) + \operatorname{ind}(T)$. Let BF(X) be the class of all B-Fredholm operators and $\rho_{BF}(X) = \{\lambda \in \mathbb{C} : T - \lambda I \in BF(X)\}$ be the B-Fredholm resolvent of T and let $\sigma_{BF}(T) = \mathbb{C} \setminus \rho_{BF}(T)$ be the B-Fredholm spectrum of T. The class BF(X) has been studied by M. Berkani (see [?, Theorem 2.7]) where it was shown that an operator $T \in \mathcal{L}(X)$ is a B-Fredholm operator if and only if $T = S_0 \oplus S_1$ where

*∎*Proposition 1.1. Let $T \in \mathcal{L}(X)$. (i) If T has the SVEP then s-reg $(T) = \rho_a(T)$. (ii) If T^* has the SVEP then s-reg $(T) = \rho_{su}(T)$.

We recall that an operator $T \in \mathcal{L}(X)$ has the single-valued extension property, abbreviated SVEP, if, for every open set $U \subseteq \mathbb{C}$, the only analytic solution $f: U \longrightarrow X$ of the equation $(T - \lambda I)f(\lambda) = 0$ for all $\lambda \in U$ is the zero function on U. We will denote by $\mathcal{H}(\sigma(T))$ the set of all complex-valued functions which are analytic on an open set containing $\sigma(T)$.

For our investigations we need the following result.

<pre>Proposition 1.2.</pre>	
	Let $T \in \mathcal{L}(X)$.
((i) If T has the SVEP then $\operatorname{ind}(T - \lambda I) \leq 0$ for every $\lambda \in$
	$\rho_{SBF}(T).$
((ii) If T^* has the SVEP then $\operatorname{ind}(T - \lambda I) \geq 0$ for every $\lambda \in$
/	$\rho_{SBF}(T).$

 $\operatorname{ind}(T-\lambda) \le 0.$ (ii) This is included in part (i) since $\operatorname{ind}(T^*) = -\operatorname{ind}(T)$.

An operator $T \in \mathcal{L}(X)$ is said to be Weyl if it is Fredholm of index zero and Browder if it is Fredholm of finite ascent and descent. The essential spectrum $\sigma_e(T)$, the Weyl spectrum $\sigma_w(T)$ and the Browder spectrum $\sigma_h(T)$ of T are defined by

 $\sigma_e(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not Fredholm} \};$

 $\sigma_w(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not Weyl} \};$

 $\sigma_b(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not Browder} \}.$

It is well known that $\sigma_e(T) \subseteq \sigma_w(T) \subseteq \sigma_b(T) \subseteq \sigma(T)$.

An operator $T \in \mathcal{L}(X)$ is called B-Weyl if it is B-Fredholm of index zero. The B-Weyl spectrum $\sigma_{BW}(T)$ of T is defined by

 $\sigma_{BW}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not B-Weyl} \}.$

For a subset K of \mathbb{C} , we shall write iso(K) for its isolated points. A complex number λ is said to be Riesz point of T in $\mathcal{L}(X)$ if $\lambda_0 \in$ $iso(\sigma(T))$ and the spectral projection corresponding to the set $\{\lambda_0\}$ has finite-dimensional range. The set of all Riesz points of T will be denoted by $\Pi_0(T)$. It is known that if $T \in \mathcal{L}(X)$ and $\lambda \in \sigma(T)$ then $\lambda \in \Pi_0(T)$ if and only if $T - \lambda I$ is Fredholm of finite ascent and descent (see [?]). Consequently $\sigma_b(T) = \sigma(T) \setminus \Pi_0(T)$. Let $\Pi(T)$ denote the set of all poles of the resolvent of T and $E_0(T) = \{\lambda \in$ \mathbb{C} : $\lambda \in iso(\sigma(T)), 0 < \alpha(T - \lambda I) < \infty$. For a normal operator T acting on a Hilbert space H, Berkani [?, Theorem 4.5] showed that $\sigma_{BW}(T) = \sigma(T) \setminus E(T)$ where E(T) is the set of all eigenvalues of T which are isolated in $\sigma(T)$. This result gives a generalization of the

classical Weyl's theorem $\sigma_w(T) = \sigma(T) \setminus E_0(T)$.

SVEP and Generalized Weyl's theorem

The concept of Drazin invertibility plays an important role for the class of B-Fredholm operators. From [?] we recall that, for an algebra \mathcal{A} with unit **1** we say that an element $a \in \mathcal{A}$ is Drazin invertible of degre k if there is an element b of \mathcal{A} such that $a^k ba = a^k$, bab = b and ab = ba. The drazin spectrum of $a \in \mathcal{A}$ is defined by $\sigma_D(a) = \{\lambda \in \mathbb{C} :$ $a - \lambda \mathbf{1}$ is not Drazin invertible}. In the case of $\mathcal{A} = \mathcal{L}(X)$, it is well known that T is Drazin invertible if and only if it has a finite ascent and descent which is also equivalent to the fact that $T = T_0 \oplus T_1$ where T_0 is an invertible operator and T_1 is a nilpotent one, see for instance [?, Proposition 6] and [?, Corollary 2.2].

Recall that $\sigma_w(T) = \bigcap \{ \sigma(T+K) : K \in \mathcal{K}(X) \}$ where $\mathcal{K}(X)$ is the class of all compact operators acting on X. It was proved in [?, Theorem 4.3] that for $T \in \mathcal{L}(X)$, $\sigma_{BW}(T) = \bigcap \{ \sigma_D(T+F) : F \in \mathcal{F}(X) \}.$

Let $T \in \mathcal{L}(X)$, we will say that : (i) T satisfies Weyl's theorem if $\sigma_w(T) = \sigma(T) \setminus E_0(T)$. (ii) T satisfies generalized Weyl's theorem if $\sigma_{BW}(T) = \sigma(T) \setminus E(T)$. (iii) T satisfies Browder's theorem if $\sigma_w(T) = \sigma(T) \setminus \Pi_0(T)$. (iv) T satisfies generalized Browder's theorem if $\sigma_{BW}(T) = \sigma(T) \setminus$ $\Pi(T)$

Let $T \in \mathcal{L}(X)$, then T satisfies generalized Weyl's theorem if and only if $\sigma_{BW}(T) = \sigma(T) \setminus \Pi(T)$ and $E(T) = \Pi(T)$.

Using a standard argument and the Riesz functional calculus, we obtain the following result.

Proposition 2.3. Let $T \in \mathcal{L}(X)$, then $\sigma_{BW}(f(T)) \subseteq f(\sigma_{BW}(T))$ for every $f \in$ $\mathcal{H}(\sigma(T)).$

Proposition : Let $\lambda \in \sigma_{BW}(f(T))$, then $f(T) - \lambda I$ is not a B-Weyl's operator. As $\sigma_{BW}(f(T)) \subseteq \sigma(f(T)) = f(\sigma(T))$, there exists $\mu \in \sigma(T)$ such that $\lambda = f(\mu)$. We have $f(z) - f(\mu) = (z - \mu)^m (z - \mu_1)^{m_1} \cdots (z - \mu_n)^{m_n} \cdots (z - \mu_n)^$ $(\mu_n)^{m_n}g(z)$ where g is a non-vanishing analytic function on $\sigma(T)$. So $f(T) - f(\mu)I = (T - \mu I)^m (T - \mu_1 I)^{m_1} \cdots (T - \mu_n I)^{m_n} g(T) = f(T) - \mu_n I$ λI . Since $f(T) - \lambda I$ is not a B-Weyl operator, and

 $\operatorname{ind}(f(T) - f(\mu)I) = m \operatorname{ind}(T - \mu I) + m_1 \operatorname{ind}(T - \mu_1 I) + \dots + m_n \operatorname{ind}(T - \mu_n I),$

there exists $\beta \in \{\mu, \mu_1, \cdots, \mu_n\}$ such that $T - \beta I$ is not a B-Weyl operator and since $f(\beta) = \lambda$ we get $\beta \in \sigma_{BW}(T)$.

The following result shows that, for operators lying in the class BW(X), the spectral mapping theorem for complex polynomials implies the spectral mapping one for complex-valued analytic functions. For its proof, we can repeat the argument used in [?, Theorem 2] word for word; we have only to replace Weyl operator by B-Weyl operator, Fredholm operator by B-Fredholm operator and Weyl spectrum by B-Weyl spectrum.

∉Theorem 2.5.

For $T \in \mathcal{L}(X)$ the following assertions are equivalent: (i) $T \in BW(X)$. (ii) $\sigma_{BW}(f(T)) = f(\sigma_{BW}(T))$ for all $f \in \mathcal{H}(\sigma(T))$. (iii) $\sigma_{BW}(p(T)) = p(\sigma_{BW}(T))$ for all complex polynomial p.

We are now in a position to show that SVEP implies the spectral theorem for the B-Weyl spectrum.

Proposition 2.6. If T or T^{*} has the SVEP, then $f(\sigma_{BW}(T)) = \sigma_{BW}(f(T))$ for any $f \in \mathcal{H}(\sigma(T))$.

Proposition : Let $f \in \mathcal{H}(\sigma(T))$. If T or T^* has the SVEP, by Proposition 1.2, T lies in BW(X) and Theorem 2.5 concludes the proof.

Recall from [?] that if $T \in \mathcal{L}(X)$ satisfies generalized Weyl's theorem then it also satisfies Weyl's theorem and if T satisfies generalized Browder's theorem then it satisfies Browder's theorem.

We now turn to an another extension of the characterization of operators obeying Weyl's theorem ([?, Theorem 4]).

Theorem 2.1. **[?**, Theorem 2.5] If $T \in \mathcal{L}(X)$ then we have (i) $\sigma_{BW}(T) \subset \sigma(T) \setminus E(T)$ if and only if $E(T) = \Pi(T)$. (ii) $\sigma_{BW}(T) \supset \sigma(T) \setminus E(T)$ if and only if $\sigma_{BW}(T) = \sigma_D(T)$.

From this theorem we obtain immediately the following corollary.

The opposite inclusion does not hold in general. Furthermore if f is injective on $\sigma_{BW}(T)$, the last inclusion becomes an equality.

The proof of the next result is similar to that one involving $\sigma_w(T)$ (see [?, Theorem 3].

♂Theorem 2.4. Let $T \in \mathcal{L}(X)$, if $f \in \mathcal{H}(\sigma(T))$ is injective on $\sigma_{BW}(T)$ then $\sigma_{BW}(f(T)) = f(\sigma_{BW}(T)).$

Let BW(X) be the class of $T \in \mathcal{L}(X)$ such that $\operatorname{ind}(T - \lambda I) \leq 0$ for all $\lambda \in \rho_{BF}(T)$ or $\operatorname{ind}(T - \lambda I) \geq 0$ for all $\lambda \in \rho_{BF}(T)$. We recall that hyponormals operators on a Hilbert space H lie in BW(H).

Our next goal is to show that generalized Browder's theorem is satisfied for f(T) whenever T or T^* has the single-valued extension property and $f \in \mathcal{H}(\sigma(T))$. To settle this, we use a characterization of the pole of the resolvent in terms of of ascent and descent given in [?].

Theorem 2.7. If $T \in \mathcal{L}(X)$ or its adjoint has the SVEP, then generalized Browder's theorem holds for f(T) for every $f \in \mathcal{H}(\sigma(T))$.