Topological Data Analysis Generalities and some Applications

Jaraf Mustapha

Université Internationale de Rabat

M.A.A.T

04-Mars-2017

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications

Research Focus

Bibliography

1 Motivation

2 Introduction

3 Basic Concepts

4 Applications

5 Research Focus

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

6 Bibliography

Jaraf Mustapha

Motivation

Basic Concepts

Applications

Research Focus

Bibliography

1 Motivation

2 Introduction

3 Basic Concepts

4 Applications

5 Research Focus

6 Bibliography

Sommaire

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications

Research Focus

Bibliography

Visual Perception

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• Visual perception is the ability to interpret the surrounding environment using light in the visible spectrum reflected by the objects in the environment.

Jaraf Mustapha

Motivation

- Introduction
- Basic Concepts
- Applications
- Research Focus
- Bibliography

Visual Perception

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Visual perception is the ability to interpret the surrounding environment using light in the visible spectrum reflected by the objects in the environment.
- We believe that the various actions leading to a developed perception are carried out in five stages:

Jaraf Mustapha

Motivation

- Introduction
- Basic Concepts
- Applications
- Research Focus
- Bibliography

Visual Perception

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Visual perception is the ability to interpret the surrounding environment using light in the visible spectrum reflected by the objects in the environment.
- We believe that the various actions leading to a developed perception are carried out in five stages:

Visualization

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications

Research Focus

Bibliography

Visual Perception

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Visual perception is the ability to interpret the surrounding environment using light in the visible spectrum reflected by the objects in the environment.
- We believe that the various actions leading to a developed perception are carried out in five stages:

Visualization Structuring

Jaraf Mustapha

Motivation

- Introduction
- Basic Concepts
- Applications
- Research Focus
- Bibliography

Visual Perception

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Visual perception is the ability to interpret the surrounding environment using light in the visible spectrum reflected by the objects in the environment.
- We believe that the various actions leading to a developed perception are carried out in five stages:

Visualization Structuring Transfiguration

Jaraf Mustapha

Motivation

- Introduction
- Basic Concepts
- Applications
- Research Focus
- Bibliography

Visual Perception

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Visual perception is the ability to interpret the surrounding environment using light in the visible spectrum reflected by the objects in the environment.
- We believe that the various actions leading to a developed perception are carried out in five stages:

Visualization Structuring Transfiguration Determination

Jaraf Mustapha

Motivation

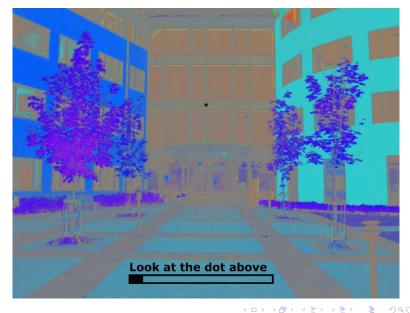
- Introduction
- Basic Concepts
- Applications
- Research Focus
- Bibliography

Visual Perception

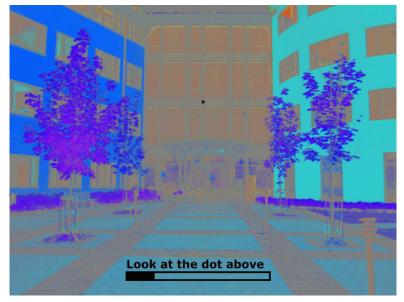
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- Visual perception is the ability to interpret the surrounding environment using light in the visible spectrum reflected by the objects in the environment.
- We believe that the various actions leading to a developed perception are carried out in five stages:

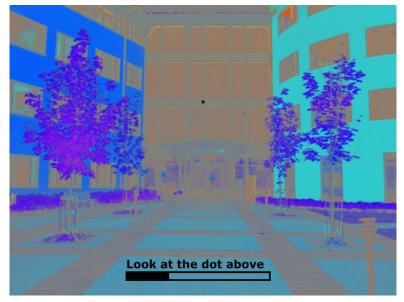
Visualization Structuring Transfiguration Determination And Classification


Jaraf Mustapha

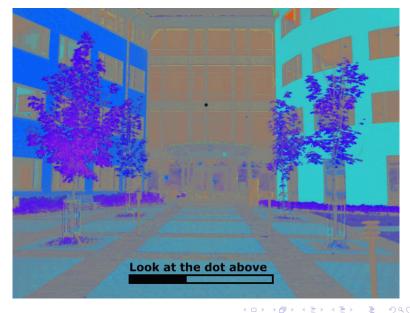
- Motivation Introduction Basic Concepts
- Applications
- Research Focus
- Bibliography


Jaraf Mustapha

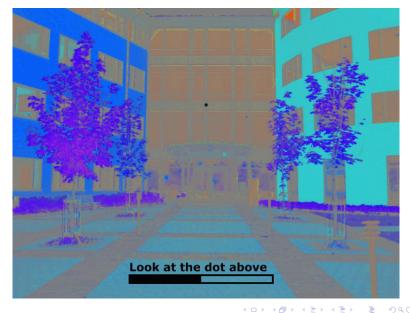
- Motivation Introduction Basic Concepts
- Applications
- Research Focus
- Bibliography


Jaraf Mustapha

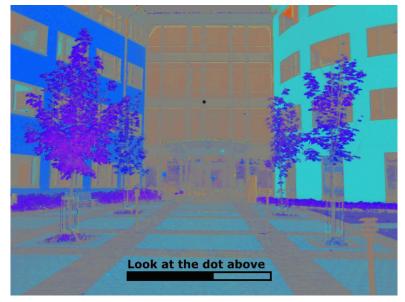
- Motivation Introduction Basic Concepts
- Applications
- Research Focus
- Bibliography


Jaraf Mustapha

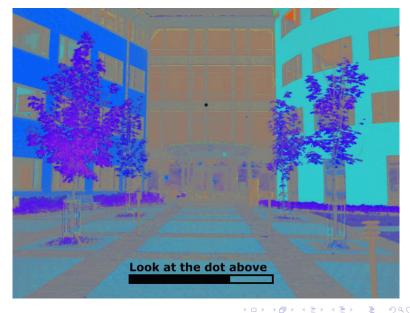
- Motivation Introduction Basic Concepts
- Applications
- Research Focus
- Bibliography


Jaraf Mustapha

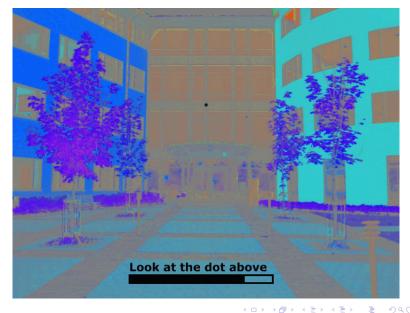
- Motivation Introduction Basic Concepts
- Applications
- Research Focus
- Bibliography


Jaraf Mustapha

- Motivation Introduction Basic Concepts
- Applications
- Research Focus
- Bibliography


Jaraf Mustapha

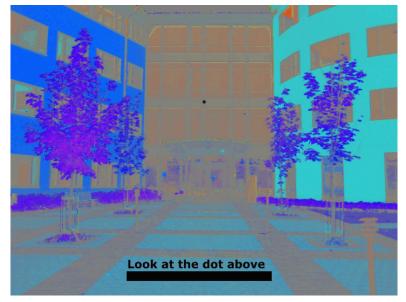
- Motivation Introduction Basic Concepts
- Applications
- Research Focus
- Bibliography


Jaraf Mustapha

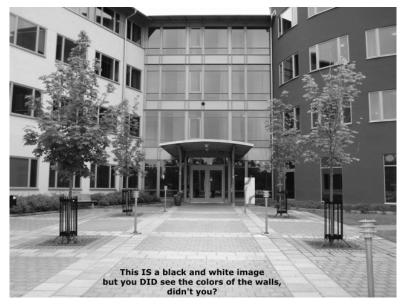
- Motivation Introduction Basic Concepts
- Applications
- Research Focus
- Bibliography

Jaraf Mustapha

- Motivation Introduction Basic Concepts
- Applications
- Research Focus
- Bibliography


Jaraf Mustapha

- Motivation Introduction Basic Concepts
- Applications
- Research Focus
- Bibliography


Jaraf Mustapha

- Motivation Introduction Basic Concepts
- Applications
- Research Focus
- Bibliography

Jaraf Mustapha

- Motivation Introduction Basic Concepts Applications
- Research Focus
- Bibliography

What these points looks like ?

______

Topological Data Analysis

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications

Research Focus

Bibliography

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications

Research Focus

Bibliography

"Data has Shape and Shape has Meaning" <u>G. Carlson</u>

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications

Research Focus

Bibliography

1 Motivation

2 Introduction

3 Basic Concepts

4 Applications

5 Research Focus

6 Bibliography

Sommaire

・ロト・四ト・ヨト・ヨト ヨー めんぐ

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications

Research Focus

Bibliography

Topological Data Analysis

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• Topological Data Analysis (TDA) is an approach to the analysis of datasets using techniques from topology.

Jaraf Mustapha

Motivation

- Introduction
- Basic Concept
- Applications
- Research Focus
- Bibliography

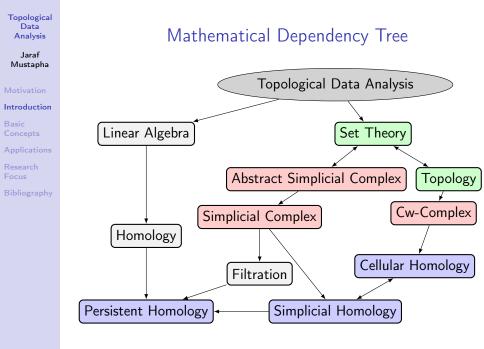
Topological Data Analysis

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- Topological Data Analysis (TDA) is an approach to the analysis of datasets using techniques from topology.
- The initial motivation is to study the shape of data. TDA has combined algebraic topology and other tools from pure mathematics to give mathematically rigorous and quantitative study of "shape". The main tool is persistent homology, an adaptation of homology to point cloud data.

Jaraf Mustapha

Motivation


Introduction

Basic Concept

- Applications
- Research Focus
- Bibliography

Topological Data Analysis

- Topological Data Analysis (TDA) is an approach to the analysis of datasets using techniques from topology.
- The initial motivation is to study the shape of data. TDA has combined algebraic topology and other tools from pure mathematics to give mathematically rigorous and quantitative study of "shape". The main tool is persistent homology, an adaptation of homology to point cloud data.
- Persistent homology has been applied to many types of data across many fields. Moreover, its mathematical foundation is also of theoretical importance. The unique features of TDA make it a promising bridge between topology and geometry.

Jaraf Mustapha

Motivation Introduction

Basic Concepts

Applications

Research Focus

Bibliography

Motivation

2 Introduction

3 Basic Concepts

Applications

5 Research Focus

6 Bibliography

Sommaire

・ロト・日本・モート モー うくぐ

• Graph

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications

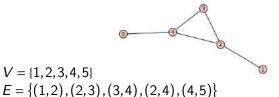
Research Focus

Bibliography

A (finite, combinatorial) graph is a pair (V, E), where V is a finite set and E is any collection of 2-element subsets of V.

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

Jaraf Mustapha


Basic Concepts

Bibliography

Graph

• $V = \{1, 2, 3, 4, 5\}$

A (finite, combinatorial) graph is a pair (V, E), where V is a finite set and E is any collection of 2-element subsets of V.

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

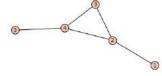
3

Jaraf Mustapha

Motivation

Introduction

Basic Concepts


Applications

Research Focus

Bibliography

• Graph

A (finite, combinatorial) graph is a pair (V, E), where V is a finite set and E is any collection of 2-element subsets of V.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• $V = \{1, 2, 3, 4, 5\}$ $E = \{(1, 2), (2, 3), (3, 4), (2, 4), (4, 5)\}$

• Simplicial Complex

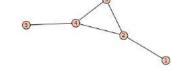
A (finite, combinatorial) simplicial complex is a pair (V, X)where V is a finite set and X is any collection of subsets of V such that : $Y \in X$ and $Y' \subseteq Y \implies Y' \in X$

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

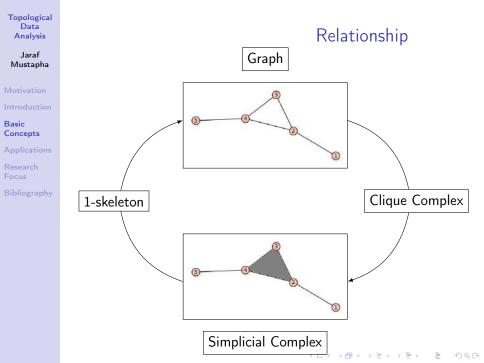

Applications

Research Focus

Bibliography

• Graph

A (finite, combinatorial) graph is a pair (V, E), where V is a finite set and E is any collection of 2-element subsets of V.



• $V = \{1, 2, 3, 4, 5\}$ $E = \{(1, 2), (2, 3), (3, 4), (2, 4), (4, 5)\}$

• Simplicial Complex

A (finite, combinatorial) simplicial complex is a pair (V, X)where V is a finite set and X is any collection of subsets of V such that : $Y \in X$ and $Y' \subseteq Y \Rightarrow Y' \in X$

• $V = \{1, 2, 3, 4, 5\}$ $E = \{(1, 2), (2, 3), (3, 4), (2, 4), (4, 5), (2, 3, 4)\}$

Jaraf Mustapha

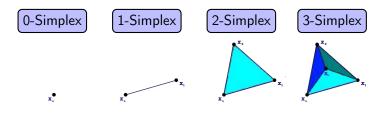
Motivation

Introduction

Basic Concepts

Applications

Research Focus


Bibliography

Simplicial Complexes

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

n-simplex

- A (k+1)-tuple of points in ℝⁿ, (x₀,...,x_n), where x_i ∈ ℝⁿ, is said to be affinely independent if the set of vectors {x_ix₀|1 ≤ j ≤ k} are linearly independent.
- An n-simplex is an ordered (n+1)-tuple of affinely independent point σ =< x₀,...,x_n>.

Jaraf Mustapha

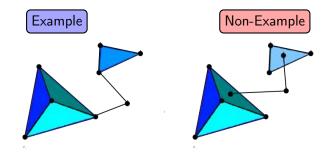
Motivation

Introduction

Basic Concepts

Applications

Research Focus


Bibliography

Simplicial Complex

A simplicial complex K is a finite set of simplicies such that :

•
$$\sigma \in K$$
, $\tau \leq \sigma \Rightarrow \tau \in K$

•
$$\sigma, \sigma' \in K \Rightarrow \sigma \cap \sigma' \leq \sigma; \sigma'$$

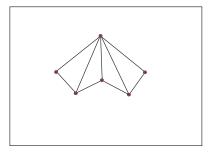
Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications


Research Focus

Bibliography

Betti-Numbers and Graphs

The first Betti-Number of a graph G = (V,E) with *n* vertices, *m* edges and *k* connected components is : $\beta_1 = m - n + k$

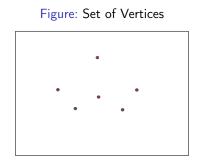
Figure: Connected Graph

Connected Components of $\mathbb{R}^2 \setminus D$

Jaraf Mustapha

Motivation Introduction

Basic Concepts


Applications

Research Focus

Bibliography

Betti-Numbers and Graphs

The first Betti-Number of a graph G = (V,E) with *n* vertices, *m* edges and *k* connected components is : $\beta_1 = m - n + k$

$$k = \beta_0 = 6$$
$$\beta_1 = 0$$

Connected Components of $\mathbb{R}^2 \setminus D$

Jaraf Mustapha

Motivation Introduction

Basic Concepts

Applications

Research Focus

Bibliography

Betti-Numbers and Graphs

The first Betti-Number of a graph G = (V,E) with *n* vertices, *m* edges and *k* connected components is : $\beta_1 = m - n + k$

Figure: Spanning Tree

$$\beta_0 = 1$$

$$\beta_1 = 0$$

Connected Components of $\mathbb{R}^2 \setminus D$

Jaraf Mustapha

Motivation Introduction

Basic Concepts

Applications

Research Focus

Bibliography

Betti-Numbers and Graphs

The first Betti-Number of a graph G = (V,E) with *n* vertices, *m* edges and *k* connected components is : $\beta_1 = m - n + k$

Figure: First Component

$$\beta_0 = 1$$

$$\beta_1 = 1$$

Connected Components of $\mathbb{R}^2 \setminus D$

Jaraf Mustapha

Motivation Introduction

Basic Concepts

Applications

Research Focus

Bibliography

Betti-Numbers and Graphs

The first Betti-Number of a graph G = (V,E) with *n* vertices, *m* edges and *k* connected components is : $\beta_1 = m - n + k$

Figure: Second Component

$$\beta_0 = 1$$

$$\beta_1 = 2$$

Connected Components of $\mathbb{R}^2 \setminus D$

Jaraf Mustapha

Motivation

Basic Concepts

Applications

Research Focus

Bibliography

Betti-Numbers and Graphs

The first Betti-Number of a graph G = (V,E) with *n* vertices, *m* edges and *k* connected components is : $\beta_1 = m - n + k$

Figure: Third Component

$$\beta_0 = 1$$

$$\beta_1 = 3$$

Connected Components of $\mathbb{R}^2 \setminus D$

Jaraf Mustapha

Motivation Introduction

Basic Concepts

Applications

Research Focus

Bibliography

Betti-Numbers and Graphs

The first Betti-Number of a graph G = (V,E) with *n* vertices, *m* edges and *k* connected components is : $\beta_1 = m - n + k$

Figure: Last Component

$$\beta_0 = 1$$

$$\beta_1 = 4$$

Connected Components of $\mathbb{R}^2 \setminus D$

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications

Research Focus

Bibliography

Homology

• Homology Theory generalizes the notion of connectivity in Graph Theory to higher dimensions.

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

Jaraf Mustapha

Motivation

Basic Concepts

Applications

Research Focus

Bibliography

Homology

- Homology Theory generalizes the notion of connectivity in Graph Theory to higher dimensions.
- It's defined by a family of groups that capture the number of :

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Jaraf Mustapha

Motivation

Basic Concepts

Applications

Research Focus

Bibliography

Homology

- Homology Theory generalizes the notion of connectivity in Graph Theory to higher dimensions.
- It's defined by a family of groups that capture the number of :

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Connected components

Jaraf Mustapha

Motivation

Basic Concepts

Applications

Research Focus

Bibliography

Homology

- Homology Theory generalizes the notion of connectivity in Graph Theory to higher dimensions.
- It's defined by a family of groups that capture the number of :
 - Connected components

• The number of holes

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Jaraf Mustapha

Motivation

Basic Concepts

Applications

Research Focus

Bibliography

Homology

- Homology Theory generalizes the notion of connectivity in Graph Theory to higher dimensions.
- It's defined by a family of groups that capture the number of :
 - Connected components

• The number of holes

• The number of cavities

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Jaraf Mustapha

Motivation

Basic Concepts

Applications

Research Focus

Bibliography

Homology

- Homology Theory generalizes the notion of connectivity in Graph Theory to higher dimensions.
- It's defined by a family of groups that capture the number of :
 - Connected components

• The number of holes

- The number of cavities
- The number of such equivalent units features in larger dimension

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications

Research Focus

Bibliography

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications

Research Focus

Bibliography

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications

Research Focus

Bibliography

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications

Research Focus

Bibliography

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications

Research Focus

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications

Research Focus

Bibliography

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications

Research Focus

Bibliography

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications

Research Focus

Jaraf Mustapha

Motivation

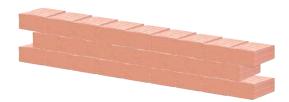
Introduction

Basic Concepts

Applications

Research Focus

Jaraf Mustapha


Motivation

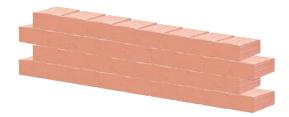
Introduction

Basic Concepts

Applications

Research Focus

Jaraf Mustapha


Motivation

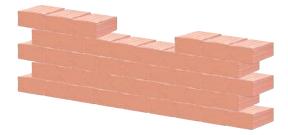
Introduction

Basic Concepts

Applications

Research Focus

Jaraf Mustapha


Motivation

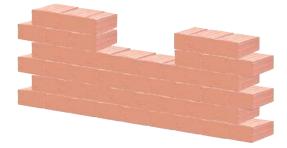
Introduction

Basic Concepts

Applications

Research Focus

Jaraf Mustapha


Motivation

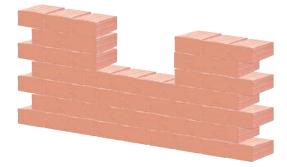
Introduction

Basic Concepts

Applications

Research Focus

Jaraf Mustapha


Motivation

Basic

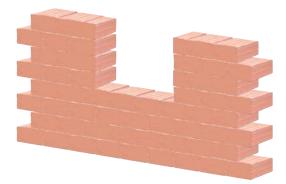
Concepts

Applications

Research Focus

Jaraf Mustapha

Motivation


miroduction

Basic Concepts

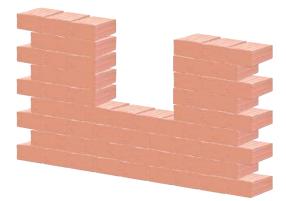
Applications

Research Focus

Bibliography

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Jaraf Mustapha


Motivation

Basic Concepts

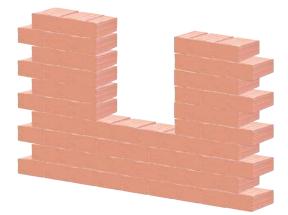
Applications

Research Focus

Bibliography

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへの

Jaraf Mustapha


Motivation

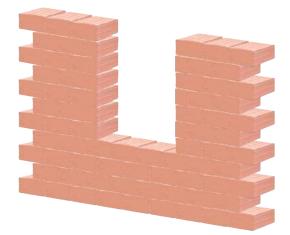
Basic Concepts

Applications

Research Focus

Bibliography

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●


Jaraf Mustapha

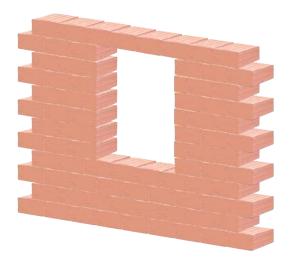
Motivation

Basic Concepts

Applications

Research Focus

Jaraf Mustapha


Motivation Introduction

Basic Concepts

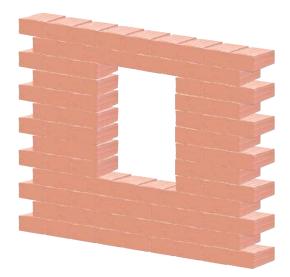
Applications

Research Focus

Bibliography

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Jaraf Mustapha


Motivation Introduction

Basic Concepts

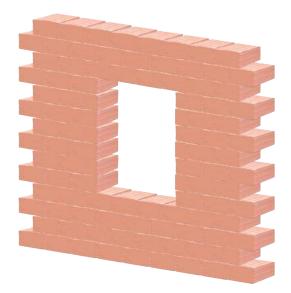
Applications

Research Focus

Bibliography

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Jaraf Mustapha


Motivation Introduction

Basic Concepts

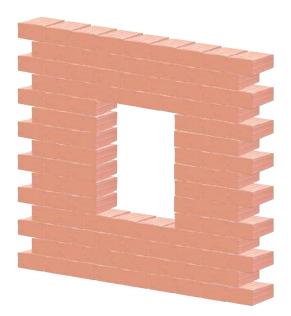
Applications

Research Focus

Bibliography

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Jaraf Mustapha


Motivation Introduction

Basic Concepts

Applications

Research Focus

Bibliography

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Jaraf Mustapha

Motivation Introduction

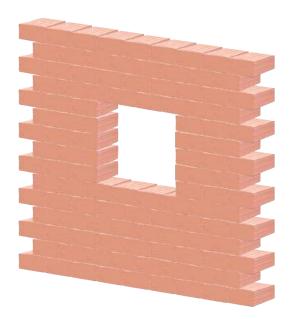
Basic Concepts

Applications

Research Focus

Bibliography

Jaraf Mustapha


Motivation Introduction

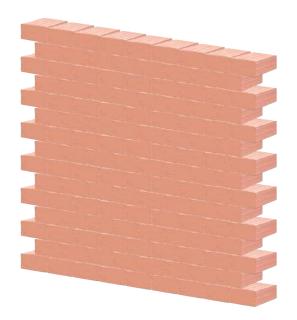
Basic Concepts

Applications

Research Focus

Bibliography

Jaraf Mustapha


Motivation Introduction

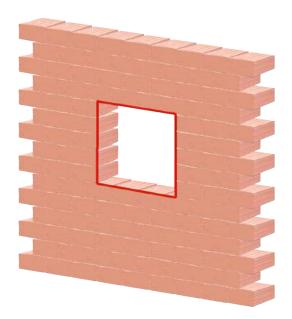
Basic Concepts

Applications

Research Focus

Bibliography

Jaraf Mustapha


Motivation Introduction

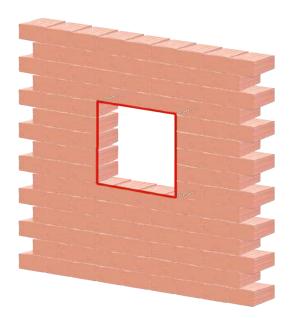
Basic Concepts

Applications

Research Focus

Bibliography

Jaraf Mustapha


Motivation Introduction

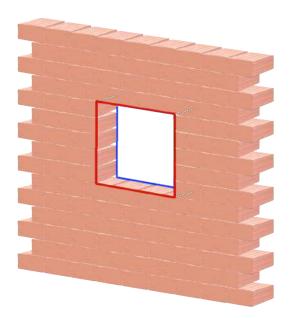
Basic Concepts

Applications

Research Focus

Bibliography

Jaraf Mustapha


Motivation Introduction

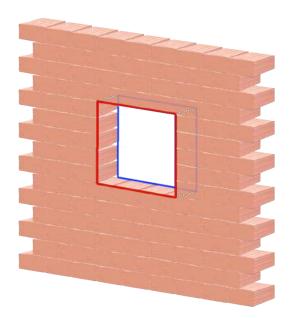
Basic Concepts

Applications

Research Focus

Bibliography

Jaraf Mustapha


Motivation Introduction

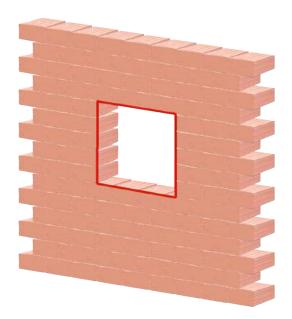
Basic Concepts

Applications

Research Focus

Bibliography

Jaraf Mustapha


Motivation Introduction

Basic Concepts

Applications

Research Focus

Bibliography

Jaraf Mustapha

Motivation Introduction

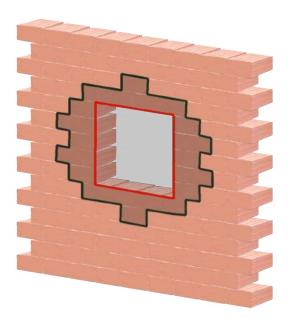
Basic Concepts

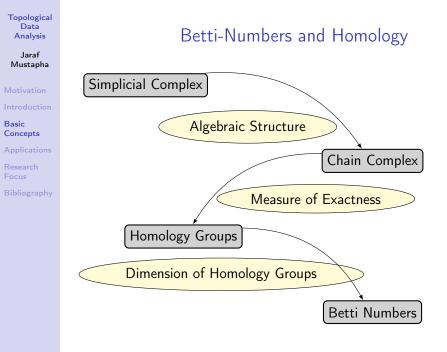
Applications

Research Focus

Bibliography

Jaraf Mustapha


Motivation Introduction


Basic Concepts

Applications

Research Focus

Bibliography

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣ぬの

Jaraf Mustapha

Motivation Introduction Basic

Applications

Research Focus Ribliograp Motivation
 Introduction

3 Basic Concepts

4 Applications

5 Research Focus

6 Bibliography

Sommaire

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへの

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications

Research Focus

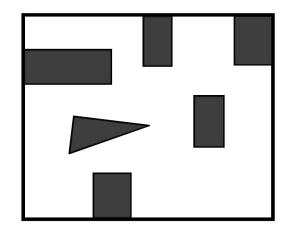
Bibliography

Robotics

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Jaraf Mustapha

Motivation Introduction


Basic Concepts

Applications

Research Focus

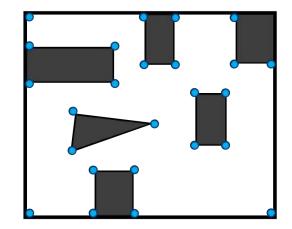
Bibliography

Autonomous Localization

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣 の�?

Jaraf Mustapha

Motivation Introductior


Basic Concepts

Applications

Research Focus

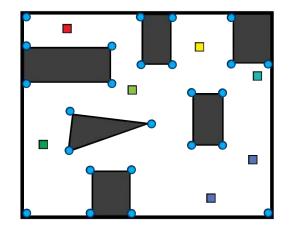
Bibliography

Autonomous Localization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Jaraf Mustapha

Motivation Introductior


Basic Concepts

Applications

Research Focus

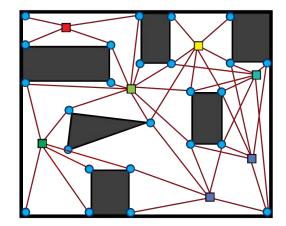
Bibliography

Autonomous Localization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Jaraf Mustapha

Motivation Introduction


Basic Concepts

Applications

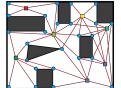
Research Focus

Bibliography

Autonomous Localization

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣 の�?

Jaraf Mustapha


Motivation Introduction

Basic Concept

Applications

Research Focus

Bibliography

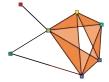


Figure: Planar domain,D

Figure: Covisibility Network, N Figure: Landmark Complex, K

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Autonomous Localization

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications

Research Focus

Bibliography

Neural Coding

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Hippocampal Spatial Map Formation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Topological Data Analysis

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications

Research Focus

Bibliography

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications

Research Focus

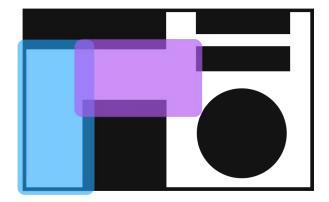
Bibliography

Place Cells and Place Fields

Jaraf Mustapha

Motivation

Introduction


Basic Concepts

Applications

Research Focus

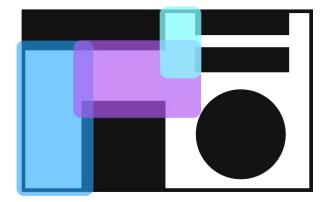
Bibliography

Place Cells and Place Fields

Jaraf Mustapha

Motivation

Introduction


Basic Concepts

Applications

Research Focus

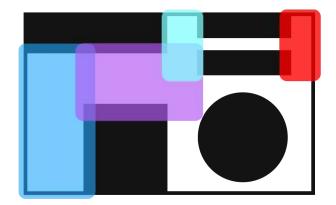
Bibliography

Place Cells and Place Fields

Jaraf Mustapha

Motivation

Introduction


Basic Concepts

Applications

Research Focus

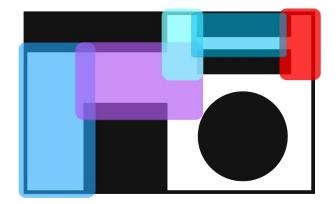
Bibliography

Place Cells and Place Fields

Jaraf Mustapha

Motivation

Introduction


Basic Concepts

Applications

Research Focus

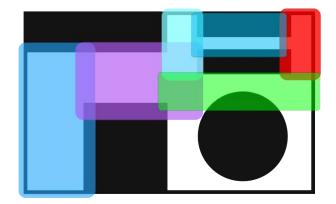
Bibliography

Place Cells and Place Fields

Jaraf Mustapha

Motivation

Introduction


Basic Concepts

Applications

Research Focus

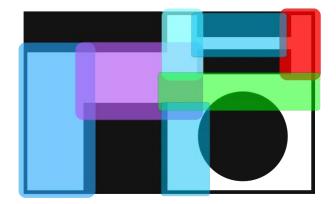
Bibliography

Place Cells and Place Fields

Jaraf Mustapha

Motivation

Introduction


Basic Concepts

Applications

Research Focus

Bibliography

Place Cells and Place Fields

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications

Research Focus

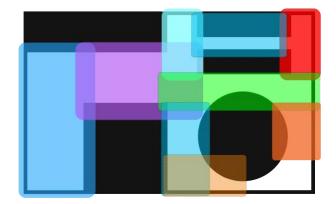
Bibliography

Place Cells and Place Fields

Jaraf Mustapha

Motivation

Introduction


Basic Concepts

Applications

Research Focus

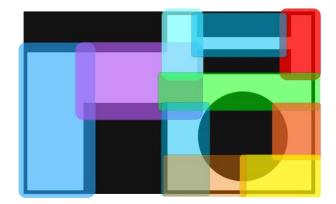
Bibliography

Place Cells and Place Fields

Jaraf Mustapha

Motivation

Introduction


Basic Concepts

Applications

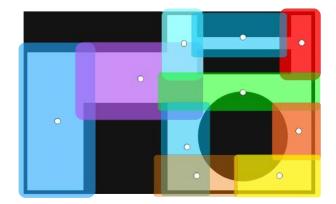
Research Focus

Bibliography

Place Cells and Place Fields

Jaraf Mustapha

Motivation


Basic Concepts

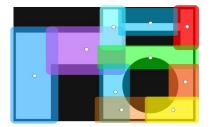
Applications

Research Focus

Bibliography

Place Cells and Place Fields

Jaraf Mustapha

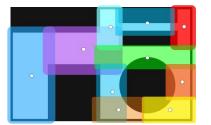

Motivation Introduction

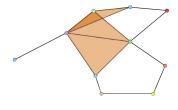
Basic Concepts

Applications

Research Focus

Neural Coding : Hippocampal Spatial Map Formation


・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()


Jaraf Mustapha

Motivation Introduction Basic

Applications

Research Focus Bibliograph

"Pyramidal neurons in rodent hippocampus exhibit a geometric organization due to their role in position coding. Each of these neurons, called place cells, acts as a position sensor, exhibiting a high firing rate when the animal's position lies inside the neuron's place field, its preferred region of the spatial environment" – Giusti, Clique Topology Reveals Intrinsic Geometric Structure in Neural Correlations.

Jaraf Mustapha


Motivation Introduction

Basic Concept

Applications

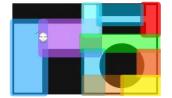
Research Focus

Bibliography

Mouse Trajectory

(م)

Jaraf Mustapha


Motivation Introduction

Basic Concept

Applications

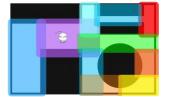
Research Focus

Bibliography

Mouse Trajectory

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Jaraf Mustapha


Motivation Introduction

Basic Concept:

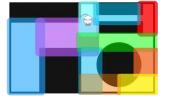
Applications

Research Focus

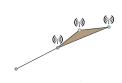
Bibliography

Mouse Trajectory

Jaraf Mustapha


Motivation Introduction

Basic Concept:


Applications

Research Focus

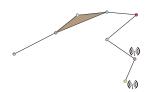
Bibliography

Mouse Trajectory

Jaraf Mustapha

Motivation Introduction

Basic Concept

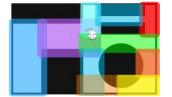

Applications

Research Focus

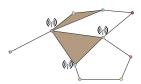
Bibliography

Mouse Trajectory

Jaraf Mustapha


Motivation Introduction

Basic Concept

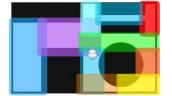

Applications

Research Focus

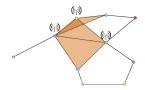
Bibliography

Mouse Trajectory

Jaraf Mustapha


Motivation Introduction

Basic Concept


Applications

Research Focus

Bibliography

Mouse Trajectory

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications

Research Focus

Bibliography

• Facial Recognition.

Other Application

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications

Research Focus

Bibliography

- Facial Recognition.
- Image processing.

Other Application

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications

Research Focus

Bibliography

• Facial Recognition.

- Image processing.
- Musical Applications.

Other Application

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Jaraf Mustapha

Motivation

Introduction

Basic Concepts

Applications

Research Focus

Bibliography

- Facial Recognition.
- Image processing.
- Musical Applications.
- Clinical variation management

Other Application

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Jaraf Mustapha

Motivation

- Introduction
- Basic Concepts

Applications

- Research Focus
- Bibliography

Other Application

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Facial Recognition.
- Image processing.
- Musical Applications.
- Clinical variation management
- Financial risk modeling

Jaraf Mustapha

Motivation Introduction Basic Concepts

Applications

Research Focus

Bibliography

Motivation

2 Introduction

3 Basic Concepts

Applications

6 Bibliography

Sommaire

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Jaraf Mustapha

Motivation

Introduction

Basic Concept

Applications

Research Focus

Bibliography

Computing Algebraic Topology

	3888/note												C			
🗢 Ju	pytei	Ho	molo	gy a	and	Cha	lin C	omp	lex i	Last C	heckpoint: 11/14	2016	(unsave	d changes)		
File	Edit	lew.	Insert	10	Sell	Ker	nel	Help								
B +	×e	6	* *	н		c	Code		3	62	CeliToolbar					
	In [1]:	5 = 5	5impli	cial	Comp	lex([[0,1], [8	,2],	[1,3	2]]); s					
	Out[1]:]: Simplicial complex with vertex set (0, 1, 2) and facets {(1, 2), (0, 2), (0, 1)}														
	In [2]:	S, hot	iology	0												
	Out[2]:	: {0: 0, 1: Z}														
	In [8]:	S.betti()														
	Out[8]:	: {0: 1, 1: 1}														
	In [4]:	: T = S.product(S)														
	In [5]:	:= T														
	Out[5]:	: Simplicial complex with 9 vertices and 18 facets														
	In [6]:	: T.honology()														
	Out[6]:	: {0: 0, 1: Z × Z, 2: Z}														
	In [10]:	T.bet	ti()													
	Out[10]:	{0: 1	, 1:	2, 2	: 1}											
	In []:															

Jaraf Mustapha

Motivation Introduction Basic Concepts Applications Research

Bibliography

1 Motivation

2 Introduction

3 Basic Concepts

4 Applications

5 Research Focus

6 Bibliography

Sommaire

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Jaraf Mustapha

- Motivation
- Introduction
- Basic Concepts
- Applications
- Research Focus
- Bibliography

• A. Hatcher. *Algebraic Topology*. Cambridge University Press, 2002.

Bibliography

- Zomorodian AJ. (2005) *Topology for computing.* Cambridge, UK; New York: Cambridge University Press. xiii, 243 p. p.
- H. Edelsbrunner, J. Harer. *Computational Topology*. Duke University. 2009
- J. Derenick, A. Speranzon, R. Ghrist. Homological Sensing for Mobile Robot Localisation. 2013.
- R. Ghrist, D. Lipsky, J. Derenick, and A. Speranzon. *Topological landmark-based navigation and mapping.* University of Pennsylvania, Department of Mathematics, Tech. Rep., 08 2012.
- Y.Dabaghian, F.Mémoli, L. Frank, G. Carlson. A Topological Paradigm for Hippocampal Spatial Map Formation Using Persistent Homology.Plos Computational Biology.2012 Aug; 8(8): e1002581

Jaraf Mustapha

Motivation

Introduction

Basic Concept

Applications

Research Focus

Bibliography

Thanks you for your attention

・ヨト ・ヨー うへの