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Tools

Research framework
Algebraic Topology

Algebraic topology is a branch of mathematics that uses tools from
abstract algebra to study topological spaces. The basic goal is to find
algebraic invariants that classify topological spaces up to
homeomorphism, though usually most classify up to homotopy
equivalence.
Algebraic topology is concerned with the construction of algebraic
invariants (usually groups) associated to topological spaces which serve
to distinguish between them. Most of these invariants are “homotopy”
invariants. In essence, this means that they do not change under
continuous deformation of the space and homotopy is a precise way of
formulating the idea of continuous deformation.



Tools

Research framework
Homotopy theory

Homotopy theory is the study of the invariants and properties of
topological spaces X and continuous maps f that depend only on the
homotopy type of the space and the homotopy class of the map.
Classical examples include the homology groups H∗(X ;Z), the
cohomology algebra H∗(X ;Z) and the homotopy groups π∗(X ).
But in practice, those invariants are sometimes difficult to compute, even
for simple spaces. A solution is to discard some informations until we
keep something that we can manipulate. The problem is that if we
discard too much informations, we don’t have anything interesting left.



Tools

Research framework
Rational homotopy theory

A good compromise has been discovered with the rational homotopy
theory: we keep the rational information by localizing with respect to Q.
The result is a theory that is both interesting and usable in practice.
Invariants of rational homotopy theory include the rational homology
groups H∗(X ;Q), the rational cohomology algebra H∗(X ;Q), the rational
homotopy groups π∗(X )⊗Q. An important aspect of that theory is the
concept of rational model : each space is replaced with algebraic models
that mimic its properties.



Tools

Research framework
Rational homotopy theory

Rational homotopy theory is the study of the rational homotopy type of a
space, it assigns to topological spaces invariants which are preserved by
continuous maps f for which H∗(f ;Q) is an isomorphism. The two
standard approaches of the theory are due respectively to Quillen (1969)
and Sullivan (1977). Each constructs from a class of CW complexes X
an algebraic model MX , and then constructs from MX a CW complex
X
Q

, together with a map ϕX : X −→ X
Q

. Both H∗(X
Q

;Z) and πn(X
Q

)
are rational vector spaces, and with appropriate hypotheses

H∗(ϕX ) : H∗(X )⊗Q −→ H∗(X
Q

;Z), and
πn(ϕX ) : πn(X )⊗Q −→ πn(X

Q
), n ≥ 2,

are isomorphisms.
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Research framework
Rational homotopy theory

In each case the model MX belongs to an algebraic homotopy category,
and a homotopy class of maps f : X −→ Y induces a homotopy class of
morphisms Mf :MX −→MY (in Quillen approach) and a homotopy
class of morphisms Mf :MY −→MX (in Sullivan’s approach). These
are referred to as representatives of f .
The power of rational homotopy theory lies precisely in the bijection

rational homotopy types
of simply connected CW
complexes with rational
homology of finite type


�←→


isomorphism classes of minimal
Sullivan algebras over Q which
are 1-connected and of finite
type


It reduces all topological computations in rational homotopy theory to
computations on an algebraic object, the minimal Sullivan algebra.
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Tools
Rational homotopy type

Sullivan’s approach associates to each path connected space X a cochain
algebra MX of the form (ΛV ,d) in which the free commutative graded
algebra ΛV is generated by V = V ≥1, and V = ⊕mΛmV with
ΛmV = V ∧ · · · ∧V (m factors) and d the differential. Additionally, each
ΛV ≥1 is preserved by d , and d also satisfies a “nilpotence”condition:
(ΛV ,d) is called a minimal Sullivan algebra.



Outcomes

Tools
Rational homotopy type

Definition

A simply connected space X is rational if π∗X is a Q-vector space. A
map f : X −→ Y is a rationalization of X if Y is simply connected,
rational and if

π∗f ⊗Q : π∗X ⊗Q −→ π∗Y ⊗Q � π∗Y

is an isomorphism.

Clearly, a rational space can not have torsion in its homotopy. Being a
rational space is a big constraint, it is not obvious that rational
spaces/rationalization exists. Luckily, the next theorem proves their
existence and unicity.
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Tools
Rational homotopy type

Theorem

Let X be a simply connected space. There exists a rational space X
Q

and
a rationalization j : X −→ X

Q
. Also, if Y

Q
is a simply connected rational

space, then any continuous map f : X −→ Y
Q

can be extended over X
Q

,
i.e., there is a continuous map g : X

Q
−→ Y

Q
which is unique up to

homotopy, such that

X Y
Q

X
Q

f

j g

commutes.
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Algebraic tools
Graded vector spaces

Definition

A graded vector space is a family V = {V i }i≥0 of vector spaces
(over the field K), indexed by the non-negative integers.

An element v ∈ V i is said to have degree i and we denote this by
|v |= i .

A graded vector space V is concentrated in degree i ∈ I (I ⊂N) if
V i = 0 for every i < I , and in this case, we would write V = {V i }i∈I .
A graded vector space V is said to be of finite type if each V i is
finite dimensional.

A graded vector space V is finite dimensional if each V i is finite
dimensional and V i = 0 for all but finitely many i ′s.
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Algebraic tools
Graded vector spaces

Definition

A linear map of degree n from a graded vector space V to a graded vector
space W is a family of linear maps fi : V i −→W i+n (for each i ≥ 0).

Definition

A differential on a graded vector space V is a linear map d : V −→ V of
degree 1 such that dn+1odn = 0 for any n ≥ 0.
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Algebraic tools
Graded algebras

Definitions

A graded algebra A is a graded vector space equipped with a linear
map A⊗A −→ A of degree zero, called multiplication and denoted
by x ⊗ y −→ xy , together with an identity element 1 ∈ A0, such that
for all x ,y ,z ∈ A,

(xy)z=x(yz) and 1x=x1 =x.

A graded algebra A is commutative if

xy = (−1)|x ||y |yx for all homogeneous elements x ,y ∈ A.

A derivation of degree k in a graded algebra A is a morphism
d : A −→ A of degree k such that

d(xy) = (dx)y + (−1)k |x |x(dy) for all x ,y ∈ A.

This is essentially the graded version of the Leibniz product rule
from differential calculus.
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Algebraic tools
Graded algebras

Definition

For any free graded vector space V , the tensor algebra TV is the graded
vector space defined by

TV =
⊕∞

q=0 T qV where T 0V = K and T qV = V ⊗ · · · ⊗V︸       ︷︷       ︸
q times

(q ≥ 1).

Multiplication is given by a.b = a⊗ b for a ∈ T qV and b ∈ T pV .
Elements v1 ⊗ · · · ⊗ vq ∈ T qV have degree= |v1 ⊗ · · · ⊗ vq |=

∑q
j=1 |vj |; and

word length q.

Suppose 1/2 ∈K and let V be a free graded module. The elements
v ⊗w − (−1)|v ||w |w ⊗ v (v ,w ∈ V ) generate an ideal I ⊂ TV .
The quotient graded algebra ΛV = TV /I is called the free commutative
graded algebra on V .
ΛV =

⊕∞
q=0Λ

qV , where ΛqV is the linear span of the elements

v1 ∧ · · · ∧ vq, vi ∈ V .
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Algebraic tools
Sullivan model

Definitions

A Sullivan algebra, is a commutative cochain algebra of the form
(ΛV ,d), with

V = {V p}p≥1;
V =

⋃∞
k=0V (k), where V (0) ⊂ V (1) ⊂ . . . is an increasing sequence

of graded subspaces such that d = 0 in V (0) and
d : V (k) −→ΛV (k − 1) for all k ≥ 1.

Let (A,d) be a cca, (ΛV ,d) be a Sullivan cca, and

φ : (ΛV ,d)
�−→ (A,d) be a quasi-isomorphism, then we say that φ is

a Sullivan model for (A,d).

A Sullivan algebra (or model) (ΛV ,d) is called minimal if
Im(d) ⊂Λ≥2V .
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Algebraic tools
Sullivan model

Remarks

1 If V 1 = 0 and d(V ) ⊂Λ≥2V , then (ΛV ,d) is automatically a
minimal Sullivan algebra.

2 A Sullivan algebra is minimal if and only if d0 = 0, where d0 is the
linear part of d.

Definition

Let (A,d) be a cdga. A Sullivan model for (A,d) is a quasi-isomorphism

m : (ΛV ,d)
'−→ (A,d) from a Sullivan algebra (ΛV ,d).
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Algebraic tools
Sullivan model

Definition

A Sullivan algebra (ΛV ,d) is formal if there exists a quasi-isomorphism

ϕ : (ΛV ,d)
'−→ (H(ΛV ,d),0)

where (H(ΛV ,d),0) is the cga H(ΛV ,d) equipped with the 0 differential.

Definition

A simply connected space X with minimal Sullivan model (ΛV ,d) is
formal if (ΛV ,d) is formal. Equivalently, X is formal if there exists a
quasi-isomorphism

ϕ : (ΛV ,d)
'−→ (H∗(X ,Q),0)
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Algebraic tools
Rationally elliptic space

Definitions

A simply connected topological space X is rationally elliptic if

dimH∗(X ;Q) <∞ and dimπ∗(X )⊗Q <∞.

The formal dimension fdimX of a rationally elliptic space X is defined by

fdimX := max{k |Hk(ΛV ,d) , 0}.

A minimal Sullivan algebra (ΛV ,d) is elliptic if its associated rational
space is elliptic. The formal dimension of an elliptic minimal Sullivan
algebra is the formal dimension of the associated space.

Definition

A minimal Sullivan algebra (ΛV ,d) is pure if dimV <∞, d |V even = 0 and
d(V odd ) ⊆ΛV even. A space is pure if its Sullivan model is pure.

Note that a pure space X is elliptic if and only if dimH∗(X ;Q) <∞.
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Explicit formula for the LS-category of a family of elliptic
spaces
Sectional category

Minimal Sullivan algebras (ΛV ,d) are equipped with a homotopy theory
and a range of invariants like the sectional category .

Definition

The sectional category of a map p : E −→ B , denoted secat(p), is the
minimum number of open sets needed to cover B, on each of which p
admits a homotopy section.

It was first studied extensively by Švarc for fibrations (under the name
genus) and later by Berstein and Ganea for arbitrary maps. The notion of
sectional category generalizes the classical (Lusternik-Schnirelmann)
category, since secat(p) = cat(B) whenever E is contractible and p is
surjective.



Explicit formula for the LS-category of a family of elliptic
spaces
Lusternik-Schnirelmann category

The Lusternik-Schnirelmann category is an old and well-known numerical
invariant of the homotopy type of spaces which may be defined as follows:

Definition

A space X has category n if this is the least integer for which X can be
covered by n open sets contractible in X .

This invariant, cat(X ), was introduced since 1934 by L. Lusternik and L.
Schnirelmann through their study of variational problems and it was
introduced by Y. S. Félix and Halperin 1982 as the first practical use of
D. Sullivan models (1977).



Explicit formula for the LS-category of a family of elliptic
spaces

Félix and Halperin developed a deep approach, within rational homotopy
theory, for computing the LS-category. Later on, and also concerning this
hard task, Félix, Halperin and Lemaire showed that for Poincaré duality
spaces (and hence for elliptic spaces) the rational LS-category coincide
with the Toomer invariant which, at first sight, may look easier to
compute. After that, Lechuga and Murillo found a formula for this
invariant which generalizes and in some cases it complements previous
results, that is, for a finite type simply connected rationally elliptic
CW-complex X with Sullivan minimal model (ΛV ,d) and for k ≥ 2 the
biggest integer such that d =

∑
i≥k

di with di (V ) ⊆ΛiV , and if (ΛV ,dk) is

moreover elliptic then cat(ΛV ,d) = dim(V even)(k − 2) + dim(V odd ). Our
first main goal is to study the case outside the previous restrictive
condition.



Explicit formula for the LS-category of a family of elliptic spaces

Explicit formula for the LS-category of a family of elliptic
spaces

Let X be a finite type simply connected CW-complex with Sullivan
minimal model (ΛV ,d) and let k ≥ 2 the biggest integer such that
d =

∑
i≥k

di with di (V ) ⊆ΛiV and dim(V ) <∞.

Consider on (ΛV ,d) the filtration given by

F p = Λ≥(k−1)pV =
∞⊕

i=(k−1)p

ΛiV . (1)

F p is preserved by the differential d and satisfies
F p(ΛV )⊗F q(ΛV ) ⊆ F p+q(ΛV ), ∀p,q ≥ 0, so it is a filtration of
differential graded algebras. Also, since F 0 = ΛV and F p+1 ⊆ F p this
filtration is decreasing and bounded, so it induces a convergent spectral
sequence. Its 0th-term is

E
p,q
0 =

(
F p

F p+1

)p+q

=

(
Λ≥(k−1)pV

Λ≥(k−1)(p+1)V

)p+q

.
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Explicit formula for the LS-category of a family of elliptic
spaces

Hence, we have the identification:

E
p,q
0 =

(
Λp(k−1)V ⊕Λp(k−1)+1V ⊕ ...⊕Λp(k−1)+k−2V

)p+q
(2)

In this general situation, the 1st -term is the graded algebra ΛV provided
with a differential δ, which isn’t necessarily a derivation on the set V of
generators. That is (ΛV ,δ) is a commutative differential graded algebra,
but it is not a Sullivan algebra. The spectral sequence is therefore:

Hp,q(ΛV ,δ)⇒ Hp+q(ΛV ,d). (3)

Hence if dim(V ) <∞ and (ΛV ,δ) has finite dimensional cohomology,
then (ΛV ,d) is elliptic. This gives a new family of rationally elliptic
spaces for which d =

∑
i≥k

di .
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Explicit formula for the LS-category of a family of elliptic
spaces

Our aim is to give an almost explicit formula for cat(ΛV ,d) when
(ΛV ,d) is elliptic but (ΛV ,dk) not necessarily elliptic.
In the first step, we shall treat the case where k = 3 under the hypothesis
assuming HN(ΛV ,δ) one dimensional, being N the formal dimension of
(ΛV ,d).
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Explicit formula for the LS-category of a family of elliptic
spaces

In what follows, we give the expression for δ in the case where k=3.
Our filtration is one of filtered differential graded algebras, hence in this
we have :

E
p,q
0 =

(
Λ2pV ⊕Λ2p+1V

)p+q

with the product given by:

(u,v)⊗ (u′ ,v ′) = (uu′ ,uv ′ + vu′), ∀(u,v) ∈ E
p,q
0 ,∀(u′ ,v ′) ∈ E

p′ ,q′

0 .
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Explicit formula for the LS-category of a family of elliptic
spaces

On the other hand, since d1 = d2 = 0 the differential on E0 is zero , hence
E
p,q
1 = E

p,q
0 and so the identification above gives the following diagram

E
p,q
1

(
Λ2pV ⊕Λ2p+1V

)p+q

E
p+1,q
1

(
Λ2(p+1)V ⊕Λ2(p+1)+1V

)p+q+1

δ

�

�

δ
d3 d4

d3

with δ defined as follows,

δ(u,v) = (d3u,d3v + d4u)
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Explicit formula for the LS-category of a family of elliptic
spaces
Our first result

Theorem (1)

If (ΛV ,d) is elliptic and HN(ΛV ,δ) = Q.α is one dimensional, then

cat0(X ) = cat(ΛV ,d) = sup{s ≥ 0, α = [ω0] with ω0 ∈Λ≥sV }.



Explicit formula for the LS-category of a family of elliptic spaces

Explicit formula for the LS-category of a family of elliptic
spaces
The first inequality

Let us resume in what follow, the algorithm that gives the first inequality:
cat(ΛV ,d) ≥ sup{s ≥ 0, α = [ω0] with ω0 ∈Λ≥sV } := r .

i) Initially we fix a representative ω0 ∈Λ≥rV of the fundamental class
α with r being the largest s such that ω0 ∈Λ≥sV .

ii) A straightforward calculation gives successively:

ω0 =ω0
0+ω1

0+...+ωl
0 with ωi

0 = (ωi ,1
0 ,ωi ,2

0 ) ∈Λ2(p+i)V⊕Λ2(p+i)+1V

dω0 = a0
2+a0

3+...+a0
t+l with a0

i = (a0,1
i ,a0,2

i ) ∈Λ2(p+i)V⊕Λ2(p+i)+1V .

It follows that a0
2 = δ(b2) for some b2 ∈Λ2(p+2)−2V ⊕Λ2(p+2)−1V .

iii) We take t the largest integer satisfying the inequality:
t ≤ 1

4 (N − 4p − 4l − 1).
iv) We continue with ω1 =ω0 − b2.

v) By the imposition iii), the algorithm leads to a representative
ωt+l−1 ∈Λ≥rV of the fundamental class of (ΛV ,d) and then
e0(ΛV ,d) ≥ r .
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Explicit formula for the LS-category of a family of elliptic
spaces
The second inequality

Denote s = e0(ΛV ,d) and let ω ∈Λ≥sV be a cocycle representing the
generating class α of HN(ΛV ,d) . Write
ω =ω0 +ω1 + ...+ωt , ωi ∈Λs+iV . We deduce that:

dω = (d3ω0 + d3ω1 + d4ω0) + (d3ω2...+ d3ωt) + (d4ω1 + ...+ d4ωt) + ...

= δ(ω0,ω1) + ...

Since dω = 0, by wordlength reasons, it follows that δ(ω0,ω1) = 0.
If (ω0,ω1) were a δ-boundary, i.e., (ω0,ω1)=δ(x), then

ω − dx = (ω0,ω1)− δ(x) + (ω2 + ...+ωt)− (d − δ)(x)

= (ω3 + ...+ωt)− (d − δ)(x)

so ω − dx ∈Λ≥s+2V which contradicts the fact s = e0(ΛV ,d).
Hence (ω0,ω1) represents the generating class of HN(ΛV ,δ). But
(ω0,ω1) ∈Λ≥sV implies that s ≤ r . Consequently, e0(ΛV ,d) ≤ r . We
conclude that

e0(ΛV ,d) = r .
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Explicit formula for the LS-category of a family of elliptic
spaces
Second result

The second step in our program reads as follow:

Theorem (2)

If (ΛV ,d) is elliptic and dimHN(ΛV ,δ) = m with basis {α1, . . . ,αm} as
before. Then, there exists a unique pj , such that cat0(X ) = rj with
rj = 2pj or else rj = 2pj + 1.
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Explicit formula for the LS-category of a family of elliptic
spaces
Example

Let (ΛV ,d) be the pure model defined by V even =< x2,x6 >,
V odd =< y5,y13,y23 > , dx2 = dx6 = 0, dy5 = x3

2 , dy13 = x2x2
6 and

dy23 = x4
6 .

Clearly we have dimH(ΛV ,d3) =∞ and dimH(ΛV ,d) <∞.
We note also that, since N = 35 is odd, then any representative of the
fundamental class of (ΛV ,d) will be of the form:

n1xk
2 x l

6y5 + n2xk ′
2 x l ′

6 y13 + n3xk ′′
2 x l ′′

6 y23, with n1, n2 and n3 ∈N.
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Explicit formula for the LS-category of a family of elliptic
spaces
Example

The matrix determining the fundamental class is:

A =


x2

2 0

x2
6 0

0 x3
6


So ω0 = −x2

2 x3
6 y13 + x5

6 y5 ∈Λ≥6V is an generator of this fundamental
cohomology class. Another representative of this class is
ω1 = −x3

2 x6y23 + x2
2 x3

6 y13. It is a straightforward calculation to prove that
they are the unique representatives. We conclude that e0(ΛV ,d) = 6.
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Explicit formula for the LS-category of a family of elliptic
spaces
Example

On the other hand HN(ΛV ,δ) has at least tow generators:
(ω0,0) ∈Λ6V ⊕Λ7V and [(0,x2

6 y23)], hence dimHN(ΛV ,δ) > 1. We
have also dimHN(ΛV ,d3) > 1 with [ω0] and [x2

6 y23] being two generators
of HN(ΛV ,d3). Here the algorithm is applied to (ω0,0) and the one of
[5] is applied to [ω0].
Note finally that e0(ΛV ,d) = 6 ,m + n(k − 2) = 5.
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Explicit formula for the LS-category of a family of elliptic
spaces
General case

A generalization of the Theorem 1 seems natural if d =
∑
i≥k

di with k ≥ 3.

Theorem

If (ΛV ,d) is elliptic, (ΛV ,dk) is not elliptic and HN(ΛV ,δ) = Q.α is
one dimensional, then

cat0(X ) = cat(ΛV ,d) = sup{s ≥ 0, α = [ω0] with ω0 ∈Λ≥sV }.
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Explicit formula for the LS-category of a family of elliptic
spaces
General case

Let us resume in what follow, the algorithm that gives the first inequality:
cat(ΛV ,d) ≥ sup{s ≥ 0, α = [ω0] with ω0 ∈Λ≥sV } := r .

i) Initially we fix a representative ω0 ∈Λ≥rV of the fundamental class
α with r being the largest s such that ω0 ∈Λ≥sV .

ii) A straightforward calculation gives successively:

ω0 =ω0
0 +ω1

0 + ...+ωl
0

with

ωi
0 = (ωi ,0

0 , . . . ,ωi ,k−2
0 ) ∈Λ(k−1)(p+i)V ⊕ . . .⊕Λ(k−1)(p+i)+k−2V

dω0 = a0
2 + a0

3 + ...+ a0
t+l

with

a0
i = (a0,0

i , . . . ,a0,k−2
i ) ∈Λ(k−1)(p+i)V ⊕ . . .⊕Λ(k−1)(p+i)+k−2V

It follows that a0
2 = δ(b2); b2 ∈

⊕k−2
j=0Λ

(k−1)(p+2)−(k−1)+jV .
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Explicit formula for the LS-category of a family of elliptic
spaces
General case

iii) We take t the largest integer satisfying the inequality:

t ≤ 1

2(k − 1)
(N − 2(k − 1)(p + l)− 2k + 5).

iv) We continue with ω1 =ω0 − b2.

v) By the imposition iii), the algorithm leads to a representative
ωt+l−1 ∈Λ≥rV of the fundamental class of (ΛV ,d) and then
e0(ΛV ,d) ≥ r .

Now, dim(V ) <∞, imply dimHN(ΛV ,δ) <∞.
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Explicit formula for the LS-category of a family of elliptic
spaces
The spectral sequence

if d =
∑
i≥k

di with k ≥ 3,

E
p,q
0 =

(
Λp(k−1)V ⊕Λp(k−1)+1V ⊕ ...⊕Λp(k−1)+k−2V

)p+q
(4)

with the product given by:

(u0,u1, . . . ,uk−2)⊗ (u
′
0,u

′
1, . . . ,u

′
k−2) = (v0,v1, . . . ,vk−2)

for all (u0,u1, . . . ,uk−2), (u
′
0,u

′
1, . . . ,u

′
k−2) ∈ E

p,q
0 with vm =

∑
i+j=m

uiu
′
j and

m = 0, . . . ,k − 2.



A generalisation

Explicit formula for the LS-category of a family of elliptic
spaces
The spectral sequence

The differential on E0 is zero, hence E
p,q
1 = E

p,q
0 and so the identification

above gives the following diagram:

E
p,q
1

(
Λ(k−1)pV ⊕Λ(k−1)p+1V ⊕ . . .⊕Λ(k−1)p+k−2V

)p+q

E
p+1,q
1

(
Λ(k−1)(p+1)V ⊕Λ(k−1)(p+1)+1V ⊕ . . .⊕Λ(k−1)(p+1)+k−2V

)p+q+1

δ

�

�

δ
dk dk+1 d2(k−1)dk

d2(k−1)−1 dk

with δ defined as follows,

δ(u0,u1, . . . ,uk−2) = (wk ,wk+1, . . . ,w2k−2) with wk+j =
∑

i+i ′=j
i ′=0,...,k−2

dk+iui ′



A generalisation

Explicit formula for the LS-category of a family of elliptic
spaces
The spectral sequence

Let E
p
1 = E

p,∗
1 =

⊕
q≥0

E
p,q
1 and E ∗1 =

⊕
p≥0

E
p,∗
1 . This gives a commutative

differential graded algebra (E ∗1,δ) which is the first term of our spectral
sequence:

E
p,q
2 = Hp,q(ΛV ,δ)⇒ Hp+q(ΛV ,d).
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Explicit formula for the LS-category of a family of elliptic
spaces

Theorem

If (ΛV ,d) is elliptic and dimHN(ΛV ,δ) = m with basis {α1, . . . ,αm} as
before. Then, there exists a unique pj , such that
cat0(X ) = sup{s ≥ 0, αj = [ω0j ] with ω0j ∈Λ≥sV } := rj with rj = 2pj or
else rj = 2pj + 1.
where ω0j ∈Λ≥rj V is a representative of the fundamental class αj with rj
being the largest s such that ω0j ∈Λ≥sV .

Remark

It suffices to apply the algorithm to each element of the base and take
the sup.
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Part IV

On topological complexity
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Topology and Robotics
The motion planning problem

Our second main goal is to give new results and study some properties of
the invariant TC (X ) for some real projective spaces and some real flag
manifolds.
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Topology and Robotics
The motion planning problem

Motion planning is a central theme in robotics

Motion planning

The motion planning problem consists of producing a continuous motion
that connects a start configuration A and a goal configuration B.

Motion planning algorithm

In terms of the configuration space X the motion planning algorithm:

Input: a point (A,B) ∈ X ×X

Output: a path: α : [0,1] −→ X such that α(0) = A and α(1) = B .
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Topology and Robotics
The motion planning problem

If X is the configuration space, then consider the free path fibration:
π : X I −→ X ×X α 7−→ (α(0),α(1)) where X I denotes the space of all
paths in X . In these terms, a motion planning algorithm is precisely a
section (not necessarily continuous) of π. That is, a map

s : X ×X −→ X I

such that is πos = id
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Topology and Robotics
The motion planning problem

Continuity of a motion planning algorithms is desired. It means that the
suggested routes (A;B) of going from A to B depends continuously on
the states A and B

Theorem

There exists a continuous section s : X ×X −→ X I of π if and only if the
space X is contractible.

In general, motion planning algorithms have discontinuities.
We can consider local continuous sections of π. These are maps defined
on an open subset U ⊂ X ×X s : U −→ X I such that
πos = inc : U ↪→ X ×X .



On topological complexity Topological complexity of real projective spaces Topological complexity of Flag manifolds

Topology and Robotics
Topological complexity

In order to study the discontinuities in these algorithms the following

notion was introduced by M. Farber in 2003:

Definition

The topological complexity of a topological space X , TC (X ); is the least
non-negative integer k such that X ×X can be covered by k open subsets

X ×X = U1 ∪U2 ∪ · · · ∪Uk

on each of which π : X I −→ X ×X admits a local continuous section.
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Topology and Robotics
Topological complexity

Examples

TC (Sn) =

{
2 if n is odd
3 if n is even

Let Sg be the compact connected orientable surface of genus g .

Then TC (Sg ) =

{
3 if g ≤ 1
5 if g ≥ 2
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Topology and Robotics
Topological complexity

In general, the computation of topological complexity is a very hard task!

Strategy

One way of dealing with topological complexity is to consider
approximations that, in some sense, are more manageable and therefore
more computable.

Definition

With any closed positive-dimensional manifold X we can associate a
homotopy invariant called the Z2-cup-length of X and defined by

cup(X ) := sup{r : ∃ x1, ...,xr ∈ H̃∗(X ;Z2),with x1 ∪ ...∪ xr , 0}.



On topological complexity Topological complexity of real projective spaces Topological complexity of Flag manifolds

Topology and Robotics
Topological complexity

Basic properties:

TC (X ) = 1 if and only if X ' ∗ is contractible.

TC (X ) depends only on the homotopy type of X .

For a path-connected topological space X it holds

cat(X ) ≤ TC (X ) ≤ cat(X ×X ) ≤ 2cat(X )− 1

For any path-connected paracompact locally contractible topological
space X , we have TC (X ) ≤ 2dim(X ) + 1

cuplenght(X ) ≤ cat(X )
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On topological complexity of some real projective spaces

An interesting result by M.Farber et al. (2003) shows that the problem of
determining the topological complexity of projective spaces is equivalent
to solving their immersion problem, i.e. the problem of finding the
minimal number k such that RPn immerses in Rk .

Theorem

For n ,1, 3, 7 the topological complexity of real projective space RPn is
TC(RPn)=In + 1 where In is the smallest natural number k such that
RPn admits an immersion into Rk . When n = 1, 3, 7 we have TC(RPn)
=n+1.

Corollary

For any n, TC(RPn)≤ 2n. If n is a power of 2, then it is an equality, that
is TC(RP2r )= 2r+1
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On topological complexity of some real projective spaces

Below is the table of the values TC(RPn) for n ≤ 23, given by Farber et
al. (2003):

n 1 2 3 4 5 6 7 8 9 10 11 12
TC(RPn) 2 4 4 8 8 8 8 16 16 17 17 19

n 13 14 15 16 17 18 19 20 21 22 23
TC(RPn) 23 23 23 32 32 33 33 35 39 39 39
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On topological complexity of some real projective spaces

In the table below we have grouped known results on optimal immersions
of some real projective spaces RPn.

n j $

1 2r − 1 with r ≡ 1,2 mod 4 2r+1 − 2r − 1 2r+1 − 2r − 2

2 2r − 1 with r ≡ 0 mod 4 2r+1 − 2r − 2 2r+1 − 2r − 3

3 2r − 1 with r ≡ 3 mod 4 2r+1 − 2r − 3 2r+1 − 2r − 4

4 2r + 1 2r+1 − 1 2r+1 − 2

5 2r + 2 2r+1 2r+1 − 1

6 2r + 3 2r+1 2r+1 − 1

7 2r + 4 2r+1 + 2 2r+1 + 1

8 2r + 5 2r+1 + 6 2r+1 + 5

9 2r + 6 2r+1 + 6 2r+1 + 5

10 2r + 7 2r+1 + 6 2r+1 + 5

11 2r + 8 2r+1 + 7 ?
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On topological complexity of some real projective spaces

n j $

12 2r + 2s , r > s ≥ 3 2r+1 + 2s+1 − 4α(n)− 1 ?

13 2r + 2s + 1, r > s ≥ 2 2r+1 + 2s+1 − 2 2r+1 + 2s+1 − 3

14 2r + 2s + 2, r > s ≥ 2 2r+1 + 2s+1 − 2 2r+1 + 2s+1 − 3

15 2r + 2s + 3, r > s ≥ 2 2r+1 + 2s+1 − 2 2r+1 + 2s+1 − 3

α(n) denote the number of 1’s appearing in the dyadic expansion of n. j
mean: immersed in the Euclidean space of dimension, and $ mean: not
immersed in the Euclidean space of dimension.
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On topological complexity of some real projective spaces

From this table we can find other results for the topological complexity of
the real projective space RPn :

n TC (RPn)

1 2r − 1 with r ≡ 1,2 mod 4 2r+1 − 2r

2 2r − 1 with r ≡ 0 mod 4 2r+1 − 2r − 1

3 2r − 1 with r ≡ 3 mod 4 2r+1 − 2r − 2

4 2r + 1 2r+1

5 2r + 2 2r+1 + 1

6 2r + 3 2r+1 + 1

7 2r + 4 2r+1 + 3

8 2r + 5 2r+1 + 7

9 2r + 6 2r+1 + 7

10 2r + 7 2r+1 + 7
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On topological complexity of some real projective spaces

n TC (RPn)

11 2r + 8 2r+1 + 7 or 2r+1 + 8

12 2r + 2s , r > s ≥ 3 ≤ 2r+1 + 2s+1 − 4α(n)

13 2r + 2s + 1, r > s ≥ 2 2r+1 + 2s+1 − 1

14 2r + 2s + 2, r > s ≥ 2 2r+1 + 2s+1 − 1

15 2r + 2s + 3, r > s ≥ 2 2r+1 + 2s+1 − 1
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On topological complexity of some real projective spaces

By applying the theorem of immersion and the ascendancy property of
TC(RPn) in terms of n we computed some other results

n 24 25 26 27 28 29
TC(R Pn) 39;40 47 47 47 48 48≤

∗ ≤51

n 30 31 32 33 34 35
TC(R Pn) 48≤

∗ ≤52
54 64 64 65 65

n 36 37 38 39 40 41
TC(R Pn) 67 71 71 71 71; 72 79

n 42 43 44 45 46 47
TC(R Pn) 79 79 80 80≤

∗ ≤82
80 ≤ ∗ ≤

84
80 ≤ ∗ ≤

86
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On topological complexity of some real projective spaces

n 48 49 50 51 52 53
TC(R Pn) 86≤ ∗ ≤

88
95 95 95 96 96≤

∗ ≤99

n 54 55 56 57 58 59
TC(R Pn) 99;100 99;100 102≤

∗ ≤104
102≤
∗ ≤107

109;110 110

n 60 61 62 63 64
TC(R Pn) 110≤

∗ ≤112
110≤ ∗ ≤

115
110≤ ∗ ≤

116
116 128
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On topological complexity of some real flag manifolds

Definition

A flag manifold is the space of flags, i.e. chains of linear subspaces of V .
Let n1, ...,nq (q ≥ 2) be fixed positive integers, and let F (n1, ...,nq) be the
real flag manifold consisting of all q-tuples (S1, ...,Sq) of mutually
orthogonal vector subspaces in Rn, where n = n1 + ...+ nq and
dim(Si ) = ni .

As a homogeneous space, we have

F (n1, ...,nq) � O(n)/O(n1)× ...×O(nq).

This makes F (n1, ...,nq) into a closed manifold of dimension:
dim(F (n1, ...,nq)) = ⊕1≤i<j≤qninj .
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On topological complexity of some real flag manifolds

Over the manifold F (n1,n2, ...,nq), there are q canonical vector bundles
γ1, ...,γq with dim(γi ) = ni . They are characterized by the fact that the
fiber of γi over (S1, ...,Sq) ∈ F (n1, ...,nq) is the vector space Si . The

direct sum
⊕q

i=1γi is the trivial n-dimensional vector bundle.
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On topological complexity of some real flag manifolds

The manifold F (n1,n2, ...,nq) is nonorientable, hence has its first

Stiefel-Whitney class ω1(F (n1,n2, ...,nq)) ∈ H1(F (n1,n2, ...,nq); Z2)
non-zero, precisely when not all of the numbers n1,n2, ...,nq have the
same parity.
Let ωi (γj ) be the Stiefel-Whitney class of the canonical vector bundle γj
over F (n1,n2, ...,nq). Then we have

H∗(F (n1,n2, ...,nq);Z2) �Z2[ω1(γ1), ...,ωn1
(γ1), ...,ω1(γq), ...,ωnq (γq)]/I ,

Where the ideal I is given by the identity

q∏
j=1

(1 +ω1(γj ) + ...+ωnj (γj )) = 1
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On topological complexity of some real flag manifolds

Definition

We define ht(ω1), the height of ω1, to be

ht(ω1) := sup{m :ωm
1 , 0 ∈ H∗(F (n1,n2, ...,nq);Z2)}
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On topological complexity of some real flag manifolds

The following result calculating ht(ω1(F (n1,n2, ...,nq))) is due to Juraj
Lörinc.

Proposition

Let F (n1,n2, ...,nq) , for q ≥ 2, be any nonorientable real flag manifold;
hence not all of n1,n2, ...,nq have the same parity. Letting p be the sum
of all even numbers among n1,n2, ...,nq, put k = min{p,n− p}. If s is the

uniquely determined integer such that 2s < n ≤ 2s+1, then we have

ht(ω1(F (n1, ...,nq))) =


n− 1 if k = 1,

2s+1 − 2 if k = 2 or
if k = 3 and n = 2s + 1,

2s+1 − 1 otherwise
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On topological complexity of some real flag manifolds

We will also make use of the following results

Theorem (J. Korbas)

1 For any m ≥ 1, k ≥ 1, one has
cat(F (1, ...,1︸︷︷︸

k times

,m)) = 1 + dim(F (1, ...,1︸︷︷︸
k times

,m))

2 Let m ≥ 2, d > 0 and j > 0 be integers. Taking t to be the integer
such that 2t ≤m < 2t+1, suppose that j ≥ 2t+d −m− 2d + 1. Then

cat(F (1, ...,1︸︷︷︸
j times

,2, ...,2︸︷︷︸
d times

,m)) = 1 + dim(F (1, ...,1︸︷︷︸
j times

,2, ...,2︸︷︷︸
d times

,m))
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On topological complexity of some real flag manifolds

Proposition (J. Korbas)

1 For any integer l ≥ 3, let s be the only integer such that
2s ≤ l < 2s+1. Then
cat(F (1,2, l)) = 3l + 3 if l = 2s+1 − 1 or if l = 2s+1 − 2

2 cat(F (1,2, l)) ≥ 2s + 2l + 2 if 2s ≤ l ≤ 2s+1 − 3,

3 cat(F (1,2,2, ...,2︸  ︷︷  ︸
n times

)) ≥ n2 + 1.

4 cat(F (2,2, ...,2︸  ︷︷  ︸
n times

)) ≥ n2 − n + 1.
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On topological complexity of some real flag manifolds

Theorem

Let F (n1,n2, ...,nq) , for q ≥ 2, be any nonorientable real flag manifold;
hence not all of n1,n2, ...,nq have the same parity. Letting p be the sum
of all even numbers among n1,n2, ...,nq, put k = min{p,n− p}. If s is the

uniquely determined integer such that 2s < n ≤ 2s+1, then we have

1 If k=1, then TC (F (n1,n2, ...,nq)) ≥ n− 1

2 If k=2, then TC (F (n1,n2, ...,nq)) ≥ n− 2

3 If k=3 and n = 2s + 1, then TC (F (n1,n2, ...,nq)) ≥ 2n− 4

4 If k=3 and n , 2s + 1, then TC (F (n1,n2, ...,nq)) ≥ n− 1

5 If k ≥ 4, then TC (F (n1,n2, ...,nq)) ≥ n− 1
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On topological complexity of some real flag manifolds

Proposition

1 For any m ≥ 1, k ≥ 1, one has

TC (F (1,1, ...,1︸  ︷︷  ︸
k times

,m)) ≥ 1 + dim(F (1,1, ...,1︸  ︷︷  ︸
k times

,m))

2 Let m ≥ 2, d > 0 and j > 0 be integers. Taking t to be the integer
such that 2t ≤m < 2t+1, suppose that j ≥ 2t+d −m− 2d + 1. Then

TC (F (1, ...,1︸︷︷︸
j times

,2, ...,2︸︷︷︸
d times

,m)) ≥ 1 + dim(F (1, ...,1︸︷︷︸
j times

,2, ...,2︸︷︷︸
d times

,m))
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On topological complexity of some real flag manifolds

Proposition

1 For any integer l ≥ 3, let s be the only integer such that
2s ≤ l < 2s+1. Then TC (F (1,2, l)) ≥ 3l + 3 if l = 2s+1 − 1 or if
l = 2s+1 − 2.

2 TC(F(1,2,l))≥ 2s + 2l + 2 if 2s ≤ l ≤ 2s+1 − 3.
3

TC (F (1,2,2, ...,2︸  ︷︷  ︸
n times

)) ≥ n2 + 1.

4

TC (F (2,2, ...,2︸  ︷︷  ︸
n times

)) ≥ n2 − n + 1.
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On topological complexity of some real flag manifolds

Example

1

6 ≤ TC (F (1,1,2)) ≤ 11.

2

8 ≤ TC (F (1,2,2)) ≤ 17.

3

12 ≤ TC (F (1,2,3)) ≤ 23
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Lusternik-Schnirelmann Category,
Math. Surveys Monogr., vol. 103, Amer. Math. Soc., Prov., 2003.



Bibliography

References

D. M. Davis.
Table of immersions and embeddings of projective spaces,
http://www.lehigh.edu/∼ dmd1/immtable.

Alexander Dranishnikov,
On topological complexity of twisted products,
Topology and its Applications 179 (2015) 74âĂŞ80.
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