The Geometry and Physics of Knots

SIR MICHAEL ATIYAH

When a mathematician addresses a general scientific audience, even as enlightened
an audience as -attends a Royal Institution Discourse, he faces a daunting task.
Mathematics can be such a highly technical and abstract subject that
communicating its latest developments to a lay public presents formidable
difficulties. Bearing this in mind I selected this evening’s topic according to the
following criteria. It should have:

(1) a simple visual content;

(2) an interesting historical background;

(3) a relation to physics;

(4) a recent exciting story.

I picked on the subject of knots because it scemed to satisfy all these criteria,
and on 11th July 1988 I sent my title off to the Royal Institution. Two weeks later,
on 26th July, there was a spectacular further break-through which will be my main
focus and makes the story even more exciting and topical than I had originally
anticipated.

Knots, Links and Braids

Let me begin by introducing the dramatis personnae of the evening: knots and their
close relatives, links and braids. For a mathematician a knot is a closed piece of
string, with no loose ends, exemplified in Figure 1.

These pictures represent the picce of string laid flat on a table, so that at each
crossing point one piece is ‘under’ and the other picce ‘over’ as indicated. Two
knots are considered the same if we can manipulate one so that it looks like the
other. The precise length (and thickness) of the string is irrelevant. Only its
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Figure 1 Unknot Unknot Trefoil
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‘knottedness’ is important. For example, the first two pictures (the circle and the
figure-eight) represent the same knot — a rather uninteresting one referred to (for
obvious reasons) as the ‘unknot’. On the other hand, the trefoil knot cannot be
disentangled and is not the same as the unknot. Of course in manipulating knots we
are not allowed to cut and rejoin the string.

In every day parlance, a knotted picce of string usually has two free ends and
we can with skill, untic the knot by threading the free ends through the knot.
However, for a long piece of string this is a lengthy process and we might prefer (or
be forced by other factors) to keep the free ends fixed and work directly on
disentangling the knot. By this stage we arc essentially back to the problem of knots
in closed strings, which is why mathematicians have focussed on this point of view.

A link is like a knot except that it is made up of scveral closed pieces of string.
Each piece may itself be knotted but, in addition, the different pieces may be
‘linked’ as illustrated by the following simple cases (Figure 2).

=0 < (P

One reason why it is necessary 1o consider links as well as knots is that it is not
easy, when presented with a diagrammatic picture (or by a real string tangle) o
decide whether it consists of one or more pieces.

Finally a braid is a collection of strings, or ‘strands’, (with free ends) which
may be entangled but which all ‘move’ in the same direction. Examples of braids
with two or three strands are illustrated in Figure 3.
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Note that each strand is always moving upwards. As with knots and links two
braids are considered the same if we can manipulatc onc into the other while
kecping the ends fixed and always maintaining the upwardncess of cach braid. The
exact positions of thg end points of the braid arc also considered irrclevant.

Figure 2

Figure 3
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Figure 4

Any braid can be converted into a link in a standard manner by simply
connecting up the initial and final points as indicated in Figure 4.

A little manipulation shows that this particular example represents a trefoil knot.
More generally every knot or link arises this way from a suitable braid.

As these few examples illustrate, the problem of deciding whether two plane
diagrams represent the same knot or link is a difficult one. It corresponds
essentially to the practical difficulty in trying to disentan gle a complicated piece of
string. By disregarding questions concerning the length and thickness of the string
the problem is not so much one of geometry as of topology. In fact the study of
knots is the archetype of a topological problem.

History of Knot Theory

Knots have attracted attention since the earliest times, as in the classical story of
Alexander the Great and the Gordian knot. It was not however until the nineteenth
century that it began to be considered scientifically. The notion of linkage is of
fundamental importance in connection with electromagnetic induction, a fact which
was fully appreciated by Maxwell. It is appropriate to recall that, here at the Royal
Institution, Faraday demonstrated that an electric current along a wire produces an
external magnetic field whose lines of forces link around the wire (Figure 5).

Such ideas may have been, in part, behind the ambitious theory of Vortex Atoms
put forward by Lord Kelvin around 1867 [2]. At this period the ultimate nature of
matter was a great mystery (it still is!) and Kelvin had the magnificent idea that
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atoms might consist of knotted voriex tubes of the cther. His arguments in favour of

this possibility can be summarised as follows:

(1) Stability. The stability of matter could be explained by the topological stability
of knots, i.e. under continuous deformation knots remain cssentially the same.

(2) Variety. The large number (actually infinite) of different knots could account for
the different chemical elements.

(3) Vibrations. The vortex tubes could presumably vibrate and this might explain
spectral lines.

As a twentieth century footnote we might add a further argument:

(4) Transmutation. At very high energies aloms can change into other atoms just as
knots can, if we allow some cutling and rccombination, change into other knots.
Kelvin’s theory was, for a decade or so, taken very seriously and Maxwell’s

verdict was that "it satisfies more of the conditions than any atom hitherto

imagined". If Kclvin’s thcory was on the right lincs then a classification of knots
was clearly going to be an essental ingredient and P.G. Tait, one of Kelvin’s
collaborators, spent more than 10 years studying and tabulating knots. He
enumerated knots by the number of crossings of a plane diagram and produced
tables of the distinct knots arising. This turned out to be a monumental task. Tait
studied knots with up to 11 crossings (a sample page of his tables is copied in

Figure 6). For 10 crossings there are 165 different knots while more recent

computer tabulations for 13 crossings produce over 10,000 dilferent knots. Perhaps

it is fortunate for chemists that Kelvin’s theory was eventually discarded!

In the course of his investigations Tait made a number of empirical discoveries
which have subsequently been christened as Tait’s conjecturcs. These conjectures
appear highly plausible but resisted all aticmpts at proof by mathematicians for a
whole century. Very recently, as a result of the exciting new ideas I am reporling on,
many of Tait’s conjectures have now been established. I will explain the simplest of
Tait’s conjectures. For this I need two notions. First an alternating knot diagram is
one where, in following the path of knot, we meet crossings which are alternately
‘over’ and ‘under’. A diagram which is not alternating Lends to be one that can be
simplified (see Figure 7), so that it might scem rcasonable to concentrate on knots
given by alternating diagrams (non-alternating knots, i.e. knots which cannot be
represented by an alternating diagram, do exist but require many crossings and are
hard to draw). Next, consider a schematic knot diagram as in Figure 8 in which a
single crossing point separates the knot into two scparatc parts, schematically
indicated by boxes. Clearly such a diagram can be simplificd by a simple half-twist
which removes the central crossing, o give Figure 9.
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Figure 7
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Figure 9

If all superfluous crossings are climinated in this way, we end up with a reduced
knot diagram. The Tait conjecturc asserts that, for a reduced alternating knot
diagram, the number of crossings is an invariant of the knot, i.e. it is independent
of the particular diagram representing the knot (as long as this is reduced and
alternating). Since a given knot can be represenied by many different reduced
alternating diagrams the fact that the number of crossings is always the same is by
no means obvious.

Invariants of Knots

After Kelvin’s Theory of Vortex Atoms was discarded the study of knots ceased to
be a part of physics and was relegated to the world of mathematics. In the twentieth
century Topology grew into a major discipline and many powerful techniques were
developed. In particular some of thesc techniques could be applied to the
classification of knots, and a major success was the discovery in 1928 of the
Alexander polynomial of a knot. Named after the Amcrican mathematician J.W.
Alexander (and not the Macedonian gencral!) this is an invariant of aknot, Le. itis
something which can be calculated algebraically from any diagram of the knot but
is independent of the diagram choscn. An invariant of this type can be very useful
in distinguishing different knots. All one has to do is 10 calculate the invariant for
two knots and see if the answers are different. In this case, the knots have to be
different. In the contrary case, when the invariants give the same answer, no
conclusion can be drawn and more work must be done (i.e. more subtle invariants
have to be investigated).

Despite the great advances made in Topology in the latter part of the twentieth
century, progress in knot theory since the discovery of the Alexander polynomial
has been slow. It was therefore a great surprise to all the experts when, in 1984, the
New Zealand mathematician Vaughan Jones discovered another polynomial
invariant of knots [1]. This is now called the Joncs polynomial, and it has many
remarkable properties. Superficially similar to the Alexander polynomial it is, in
fact, fundamentally different. In particular, the Joncs polynomial can (sometimes)
distinguish a knot from its mirror image: for cxample, it distinguishes right- handed
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and left-handed trefoil knots. The Alexander polynomial on the other hand can
never distinguish mirror images.

It may be helpful at this stage to illustrate all this with a few formulae. For any
knot (or link) let us denote the Alexander polynomial as A(r) and the Jones
polynomial as V(t), where tis a formal variable. For the standard unknoticd circle,
A(f) = V(1) = 1 while for the trefoil knot

A =t-1+r"
Vig=-+ 82+t

For the other trefoil knot (the mirror image) ¢ gets replaced by its inverse 1
Clearly A(f) is unchan%ed, but V(¢) is altered. Note that both A(z) and V(1) are
polynomials in r and /" with integer coefficients. This is always the case for any
knot. These coefficients are essentially numerical invariants of the knot. Arranging
them in a polynomial is a convenicnt algebraic device for organising them.

The Jones invariants have proved to be very powerful tools in the study of
knots. They have led to the proof of many of Tait’s century old conjectures,
including the one about reduced alternating knots [ described above. They have also
been generalised so that we now have a whole (infinitc) coflection of Jones-type
polynomial invariants of knots. On the other hand, these invariants do not fit easily
into the standard framework of conventional topological theory. They have more to
do with ideas and techniques from various branches of theoretical physics,
including statistical mechanics and quantum ficld thcory.

This is a very brief description of the situation as it stood in the summer of
1988. There was an enormous amount of aclivity connccting physics with knot
theory, but the essential rcasons behind it all remained mysterious. Then, on 26th
July 1988 at the International Conference on Mathematical Physics in Swansea,
Edward Witten, from Princeton, suddenly hit on the key idea {3]. We now have a
much better and more fundamental understanding of the relation between quantum
physics and knot theory. The purpose of my Discourse is to explain this new insight
without resorting to mathcmatical technicalitics.

Force-free Regions

In classical clectromagnetism a charged particle is acted on by a force field. In a
region of spacc where there are no such forces a particle travels freely. However,
quantum mcchanics alters this naive picture as is clearly demonstrated by the
famous Bohm- Aharonov effcct. This concerns a beam of clectrons travelling in a
region external 10 a solenoid. The solenoid producces a magnetic ficld inside but the
external region is shiclded and has no magnetic field. Classically nothing should
happen to the electrons but cxperimentally a diffraction pattern is produced.
Quanum mechanically this is interpreted by saying that the wave-function of an
electron undergoes a phase-shift on going round the solenoid.
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Thus, although there are no forces in the region external to the solenoid, there
are definite physical effects. Moreover the phase-shift is proportional to the strength
of the solenoid.

This phenomenon is difficult to understand so it may be helpful to consider an
analogous geometrical situation. In fact, according to Einstein’s theory of General
Relativity, gravitational force can be interpreted as curvature of space- time. A
region where space-time is flat has therefore no gravitational force. Our example
will be one where, outside some central core (analogue of the solenoid) space is flat
but straight lines exhibit a kind of phase-shift. For simplicity, the example will be
two-dimensional and concerned with the geometry of surfaces.

Let me begin by recalling that in plane Euclidcan geometry the sum of the
interior angles of any triangle is 180°. On a sphere, for spherical triangles made out
of great circle arcs, the angle sum exceeds 180°. Moreover this excess depends
inversely on the radius of the sphere: the smaller the radius the more curved the
sphere and the bigger the excess. Now consider instead the surface of a cone. We
can slit the cone along a line OA through the vertex and then open it up so as to get
a plane region as indicated in Figure 10.

A B

Figure 10

Consider now triangles drawn on the surface of the cone. We can examine these
on the opened up cone. From this (sec Figure 11) it is clear that: (i) a triangle not
containing the vertex in its interior has angle sum 180°; (ii) a triangle containing the
vertex in its interior has angle sum exceeding 180° (by an amount ).

If the angle o is small the cone is very nearly a flat plane and the angle sum is
nearly 180°. On the other hand for large values of a the conc is sharply pointed and
the angle sum exceeds 180° by a large amount.

The cssence of this example is that a cone, away from the vertex is really flat
and that its local geometry is Euclidean. However, the global gecometry of a cone,
represented by triangles containing the vertex in their interior, is definitely not
Euclidean. The vertex is a singularity which produces these non-Euclidean effects.
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Figure 11

Unlike a normal ‘source’ the vertex produces no ficld of force (local curvature). Its
effect is purely global or topological: it enables us to distinguish between triangles
which contain the vertex and those which do not. Moreover the vertex has a
‘strength’, the angle o, which determines the scale of its effect.

To compare this with the Bohm-Aharonov effect we should reduce the
dimension of the latter by taking a plane slice orthogonal to the solenoid. The
solenoid (if ideally thin) would then produce the analogue of the cone’s vertex. The
phase-shift is the analogue of the angle excess a.

Since the quantum wave-function of an electron is a difficult notion to grasp we
can try to understand the Bohm-Aharonov cffect in simpler terms, analogous to our
geometric example, by thinking of an electron as a particle with some additional or
internal structure. For example, if we restrict ourselves to a fixed plane slice
orthogonal to the solenoid, we could picture an clectron as having a (very small)
irregular shape (e.g. a triangle). Rotating this shape would then constitute
phase-shifts, and we could interpret the cffect of the solenoid as producing a
definite rotation of the electron shape as it went round the solenoid.

This simplified picture can be generalised to allow for a number of parailel
solenoids. The external force-free region would then, in a plane slice, affect our
small electron shapes by producing an appropriate rotation depending on how many
of the solenoids the electron went round. The rotations would simply add up.

All of this is really preparatory to a major gencralisation of a new kind which 1
shall describe in the next section and which will bring us closer to the Jones
polynomials.

Higher-dimensional Phases

Phase in the quantum theory of the electron is an angle. However for important
generalisations, which are now standard in modem elementary particle theory,
phase can become a rotation in a threc-dimensional {or higher-dimensional)

29
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‘internal’ space. Now rotations in three-dimensions are determined by an axis of
rotation and an angle. The possible variability of the axis produces important new
features. In particular, the composite of two rotations with dilferent axes is a
complicated operation and is not just given by adding angles as in the planar case.
Moreover, the order in which the two rotations are performed affects the answer.

- Suppose we now consider a solenoid in such a more general theory. Our test
particle (playing the role of the elcctron) in the external region will then undergo
some definite three-dimensional ‘internal’ rotation, described by an axis and an
angle. Next let us consider a number of such solenoids. For simplicity take them all
parallel and having the same strength or angle. However, their axes ar¢ unrestricted
(the axis is related to ‘internal’ space and is not tied to the direction of the golenoid
in real space).

Taking a plane slice across these solenoids, the external region in which our test
particle moves has no forces but is characterised by the axes associated to the
various solenoids. Each choice of axes gives a physically different force-free region
or ‘vacuum’ outside the solenoids.

So far we have been describing an cssentially static situation. Now we will
allow things to change with time, by letting the solenoids move around. For
simplicity we stick to our plane slice and idealise its intersection with each solenoid
to a point. Our motion is then represented by some motion of these points in the
plane. We will insist: (i) the points always remain distinct; (ii) at the end of the
motion the set of points returns 1o its original position (possibly permuting the
individual points).

Since we have discarded the third spatial dimension (along the solenoids) it is
convenient Lo re-use the third dimension as time, and to represent the motion of our
set of points in the plane by its space-time graph. Such a graph gives precisely a
braid as described above, the number of strands being the number of solenoids.

Since the external region is force-free we can think of our moving points as
drifting around independently. This makes it plausible that only the topology of the
motion, essentially the braid, is significant.

We can now ask how our vacuum behaves under this motion. How does it
propagatc? More explicitly, given an initial choice of axes for the different points
(representing the solenoids) what is the final set of axes arising from a given motion
or braid?

It is at this stage that we have to remember that we are dealing with a quantum
theory. This means that we can only expect probabilistic answers to our questions.
Thus given an initial set of axes A and a final set B we can ask for the probability
that, starting with A we end up with B.

For example, suppose we have four points (representing four solenoids). Taking
the X, Y, Z axes for each point gives a total number of 4 x 3 = 12 choices for A.
Similarly there are twelve choices for B. Hence our probabilitics are described by a
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12 x 12 matrix P 5. Each braid on four strands is then supposed to produce such a
12 x 12 matrix P.

The matrix P describes how the ‘quantum vacuum’ is affected by the motion
defined by the relevant braid. In particular the single number

Trace P = ZPAA
A

is an important numerical invariant. When divided by the number of choices for A
it gives the probability that the initial and final vacuum state coincide.

So far I have attempted to show how braids appear naturally in modern physical
theories and that appropriate numerical invariants have a physical meaning as
quantum probabilities. In the next section I will take the last step by passing from
braids to links and knots. This depends on the use of ideas from relativity theory.

Relativistic Invariance

I have already introduced knots, links and braids and I indicated that, by closing up
a braid, we obtain a link and in fact all links arisc in this way. However, many
different braids can give rise to the same link. In particular the number of braid
strands can vary. Thus to construct a link invariant we can start from some braid
invariant, but this will have to be rather special, satisfying various constraints, if it
is to give a link invariant.

In the previous section I indicated how quantum theory ideas can lead to braid
invariants, the probabilities of ‘vacuum evolution’: morc precisely the traces of the
probability matrices give numerical invariants. [t is natural to ask what further
constraints are required for these to give braid invariants. In physical terms the
answer is given by relativistic invariance.

Let me recall, at this stage, that the fundamental principle of relativity theory is
that physics should be described in terms of four dimensional space/time, with time
on an essentially equal footing with the three spatial dimensions. For a given
physical theory to be relativistically invariant is a strong constraint, and is not
always evident when the theory is described by a dynamic description involving a
time evolution. It depends very much on the detailed laws or evolution equations of
the theory.

There is a general approach due 1o Feynman which describes a physical theory
directly in a space/time version and makes manifest relativistic invariance. This
approach is based on the Feynman path integral which essentially assigns
probabilities to all possible motions.

The theory which I was attempting to describe in the previous section was in
dynamic or evolution form. However, Witten [3] has given a Feynman integral
description of this theory and hence demonsiratcd its relativistic invariance.



302

224 Royal Institution Proceedings

Because we ignored one of the three spatial dimensions (along the solenoids) all
our dimensions are one less than usual. Thus space/time is now just three
dimensional and our braid was just a graph in this reduced space/time. Relativistic
invariance means that, in this three-dimensional picture, time has no special
significance. But this essentially brings us back to links, because the distinguishing
feature of a braid is that all its strands move upwards (with timc).

‘Witten’s version of the theory therefore leads at once to link invariants and
Witten has shown that these invariants are just the Jones invariants described
earlier. To be precise the quantitics (quantum probabilitics) which Witten’s theory
assigns to a link are values of the corresponding Jones polynomial V(z) at special
values of the variable 1. However, there are infinitely many such values (depending
on the ‘strengths’ of the solenoids) and so this information dctermines the complete
polynomial V().

Conclusion

Let me try to sum up the story on the physical interpretation of the Jones invariants
of krots and links. We start by considering a number of points in the plane each
carrying a generalised magnetic flux. This flux has a strength or ‘angle’ which is
fixed but it has also a variable axis. A choice of axis at each point determincs the
external vacuum — a force-free region in which physical effccts are nevertheless
present.

Allowing this situation to evolve in time leads to a braid, as a space-time graph
of the motion of the points. The external vacuum evolves and this evolution is
described by quantum probabilitics. These probabilities yield invariants of the
braid.

Finally, a relativistically invariant version of this story yiclds invariants of links.
Thus the Jones invariants acquire a physical meaning as expectation values in a
relativistically invariant quantum field thcory. Moreover this theory is based on the
generalisations of electromagnetism in which phasc angles are replaced by rotations
in higher-dimensional ‘internal’ space.

Even a superficial reading of the preceding paragraphs brings out the
remarkable fact that this interpretation of the Jones invariant of links involves all
the most sophisticated aspects of modern theoretical physics: quantum theory,
relativity and ‘generalised’ electromagnetism. By contrast the Alexander
polynomial can be simply interpreted using only classical clectromagnetism. The
fact that the Jones polynomial can distinguish mirror images is directly related to
the physical theories involved being themselves sensitive to orientation, and this in
turn is related to the lack of ‘parity conservation’ in fundamental physical
processes.

It is striking that the development of knot theory has thus come full circle. It
began as a putative branch of physics, with Kelvin’s theory of vortex atoms.
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Thrown back at the mathematicians knot theory developed slowly over the next
hundred years, until it exploded into activity with the discovery of the Jones
polynomial. Now we understand the Joncs polynomial in terms of present day
physics, vastly more sophisticated than the physics of Kelvin’s time.

The relevance of the Jones polynomial for real physics, as opposed to the formal
model physics I have been discussing, is still not clear. However, in more general
terms, topological idcas are now playing a fundamental role in all current physical
theories. The deep reason for this is certainly connected with the stability ideas that
motivated Kelvin. The difference is that physicists today do not regard atoms as the
ultimate entities: they are digging deeper. The ideas that Kelvin was trying to apply
at the atomic level are now, in a new guise, being applied at an even more
fundamental lcvel. In a sense Kelvin was on the right track and a long way ahcad
of his time. He would undoubtedly be both amused and impressed at the way, a
century later, knots have re-entered physics.
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