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Introduction by the Organisers

In [9], Sullivan defined tools and models for rational homotopy inspired by already
existing geometrical objects. Moreover, he gave an explicit dictionary between his
minimal models and spaces, and this facility of transition between algebra and
topology has created many new topological and geometrical theorems in the last
30 years.

When de Rham proved that H∗(ADR(M)) ∼= H∗(M ;R) for the differential
algebra of differential forms ADR(M) on a manifold M , it immediately provided a
link between the analysis on and the topology of the manifold. Sullivan suggested
that even within the world of topology, there is more topological information in
the de Rham algebra of M than simply the real cohomology.

In the de Rham algebra, there is information contained in two different entities:
the product of forms, which tells us how two forms can be combined together to
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give a third one and the exterior derivative of a form. In a model, we kill the infor-
mation coming from the product structure by considering free algebras ∧V (in the
commutative graded sense) where V is an R-vector space. This pushes the corre-
sponding information into the differential and into V where it is easier to detect.
More precisely, we look for a cdga (for commutative differential graded algebra) free
as a commutative graded algebra (∧V, d) and a morphism ϕ : (∧V, d)→ ADR(M)
inducing an isomorphism in cohomology.

For instance, ifG is a compact connected Lie group, there exists a sub-differential
algebra of bi-invariant forms, ΩI(G), inside the de Rham algebra ADR(G), such
that the canonical inclusion ΩI(G) →֒ ADR(G) induces an isomorphism in coho-
mology. This is the prototype of the process for models: namely, we look for a
simplificationMM of the de Rham algebra with an explicit differential morphism
MM → ADR(M) inducing an isomorphism in cohomology, exactly as bi-invariant
forms do in the case of a compact connected Lie group.

The first question is, can one build such a model for any manifold? The answer
is yes for connected manifolds and in fact, there are many ways to do this. So,
we describe a standard way, which is called minimal, and which is defined by
requiring that the differentials of elements of V have no linear terms. Once we
have this minimal model (which is unique up to isomorphism), we may ask what
geometrical invariants can be detected in it. In fact, there is a functor from algebra
to geometry that, together with forms, creates a dictionary between the algebraic
and the geometrical worlds. But for this we have to work over the rationals and
not over the reals. As a consequence, we have to replace the de Rham algebra
by other types of forms. This new construction is very similar to the de Rham
algebra and allows the extension of the usual theory from manifolds to simplicial
sets (or topological spaces), which is a great advantage. Denote by APL(X) this
analogue of the de Rham algebra for a simplicial set X . Since the minimal model
construction also works perfectly well over Q, we have the notion of a minimal
modelMX → APL(X) of a path connected space X .

Conversely, from a cdga (A, d) we have a topological realization 〈(A, d)〉 and if
we apply this realization to a minimal modelMX of a space X (which is nilpotent
with finite Betti numbers), then we get a continuous map X → 〈MX〉 which
induces an isomorphism in rational cohomology. The space 〈MX〉 is what, in
homotopy theory, is called a rationalization of X . What must be emphasized
in this process is the ability to create topological realizations of any algebraic
constructions. Hence, Sullivan’s theory can be seen as a rational version of classical
differential geometry.

Such theories beg for applications and examples and it is possible to describe
models for spheres, homogeneous spaces, biquotients, nilmanifolds, symplectic
blow-ups and the free loop space. These models have geometrical applications, for
instance, to complex and symplectic manifolds, the closed geodesic problem, cur-
vature questions, actions of tori and, more recently, the Chas-Sullivan loop prod-
uct. The focus of this Arbeitsgemeinschaft was the relationship between Rational
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Homotopy Theory and Geometry with a natural extension to Physics via string
topology. Several monographs are devoted to these theories: [1, 4, 5, 6, 10, 11].

The Arbeitsgemeinschaft consisted of 18 talks whose overriding goal was to tie
together problems in geometry with rational homotopy theory. For instance, the
question of the existence of infinitely many geodesics on a closed manifold was
shown to be intimately tied up with the rational homotopy of the free loop space.
Similarly, the rational homotopy qualities of a space were shown to depend on
special properties of the geodesic flow on the manifold (considered as a Hamiltonian
system). Rational homotopy was also shown to be important to understanding the
difference between Kähler and symplectic manifolds as well as a key ingredient in
treating certain “rational” problems about sectional curvature. (References for
these items will be given in the following abstracts.) The Arbeitsgemeinschaft was
attended by about 50 people, including many young mathematicians who gave
excellent talks. No one was lost on the traditional hike.
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Abstracts

Fundamentals of Geometry

Wilderich Tuschmann

After an introduction to curvature quantities in Riemannian geometry and stat-
ing some classical results about the topology of nonnegatively and nonpositively
curved manifolds, I discussed the principal Riemannian finiteness theorems and
known obstructions to the existence of (almost) nonnegatively curved metrics on
closed manifold along with their respective interactions with (rational) homotopy
theory, as well as the following open problems in the field:

(1) Conjecture (Bott, extended by Grove): Are almost nonnegatively curved
manifolds rationally elliptic?

(2) Question: Do almost nonnegatively curved manifolds admit Riemannian
metrics with vanishing topological entropy?

(3) Conjecture (Hopf): Do nonnegatively curved manifolds have nonnegative
Euler characteristic?

(4) Question: Are positively curved manifolds formal?

Sullivan Models

Maura Macr̀ı

This talk is an introduction to Sullivan (minimal) models focusing on their applica-
tions to geometrical examples used in later expositions: Lie groups, homogeneous
spaces, principal G-bundles and biquotients. For more details we refer to [3, 4, 8].

To define Sullivan models we consider a particular algebraic object called com-
mutative differential graded algebra (cdga for short), that is a graded vector space
together with an associative multiplication with unit and commutative in the
graded sense, endowed with a differential d (d2 = 0) which is a derivation.
A basic example of cdga is the de Rham algebra of a differentiable manifold.

A cdga ΛV is free commutative if ΛV = TV/I where TV is the tensor algebra
over the graded vector space V and I is the bilateral ideal generated by elements
a⊗ b− (−1)|a||b|b⊗ a. A Sullivan cdga is a free commutative cdga ΛV such that
V admits a basis {xα} indexed by a well-ordered set, with dxα ∈ Λ(xβ)β<α. If
the Sullivan cgda satisfies the additional property that the differential dxα is a
polynomial in generators xβ with no linear part, then it is called minimal.
Given a cdga A, a Sullivan (minimal) model for A is a Sullivan (minimal) cdga
ΛV toghether with a quasi-isomorphism from ΛV to A.

An explicative example is the model of the de Rham algebra of the sphere Sm:
the requirement of commutativity in the above definitions implies that this model
has only one generator when m in odd and two generators when it is even.



1000 Oberwolfach Report 18/2011

Minimal models are important because they describe the rational part of ho-
motopy groups: given a path connected space X we can always associate a ratio-
nal cdga APL(X) whose cohomology is isomorphic to the rational cohomology of
X . If the space X is nilpotent and ΛV is the minimal model of APL(X), then
V n ≃ Hom(πn(X),Q), for any n > 1.

Even if Sullivan models are related to homotopy theory, they have several ap-
plications also in different areas. For this reason it is important to give examples
of particular constructions of models.

Lie groups. Using the Hopf theorem we can easily find that the minimal model
of a Lie group G is just its cohomology algebra H∗(G) = Λ(x2p1+1, ..., x2pr+1).
Note that the generators have odd degree and, in fact, the number of generators
is the rank of the group.

Homogeneous spaces and principal G-bundles. To construct these models
we need to consider models of fibrations: given a quasi-nilpotent fibration
F →֒ E → B, if (ΛV, d) is the minimal model of the base space, then (ΛV ⊗ΛW,d)
is a Sullivan model for the total space and the quotient

(ΛW, d̄) := (ΛV ⊗ ΛW,d)/(Λ+V ⊗ ΛW )

is the minimal model for the fiber.
In the particular case of universal G-bundle the model becomes

(ΛV, 0)→ (ΛV ⊗ ΛsV, d)→ (ΛsV, 0),

where d(sv) = v.
Using this model we can prove that if H is a closed connected subgroup of a com-
pact connected Lie group G, i : H →֒ G is the inclusion and Bi : BH →֒ BG is the
map induced on classifying spaces (whose cohomology algebras are H∗(BG,Q) =
ΛV and H∗(BH ,Q) = ΛW respectively), then a Sullivan model for the homoge-
neous space G/H is (ΛW ⊗ ΛsV, d) where d(w) = 0 and d(sv) = H∗(Bi)(v).
Furthermore given a principal G-bundle E → B if (ΛV, 0) is the minimal model
of the Lie group G and (ΛW,d) is that of the base space B, then the model of the
total space E is (ΛW ⊗ ΛV, d).

Biquotients. A compact manifold is called a biquotient if it is diffeomorphic to
a double quotient K \G/H with respect to a right action of a closed subgroups H
of G and a free left action of a closed subgroup K of G on G/H [1].

To define the minimal model of a biquotient K \G/H we need to consider the
following pullback fibration diagram

K \G/H //

��

BH

BiH

��

BK
BiK

// BG
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This diagram allows us to consider a biquotient as the total space of a pullback
fibration, so we can prove that if the cohomology algebras of the classifying spaces
are respectively H∗(BG,Q) = ΛV , H∗(BH ,Q) = ΛWH and H∗(BK ,Q) = ΛWK ,
then a Sullivan model for the biquotient is (ΛWH ⊗ ΛWK ⊗ ΛsV, d) (cf. [2, 7]).

Nilmanifolds. A nilmanifold is a compact quotient N = G/Γ, where G is a real
simply-connected nilpotent Lie group and Γ is a discrete cocompact subgroup of
G. The cohomology of N , and hence its minimal model, depends only on the Lie
algebra g of the Lie group G. Indeed the Nomizu theorem states that the inclusion
Λg∗ →֒ ADR(N) is a quasi-isomorphism [6].
The nilpotency of G implies that there is a basis {ω1, . . . , ωn} of g∗ such that
d(ωp) =

∑
i<j<p a

p
ijωi ∧ ωj . Since this basis satisfies the property of minimality,

(Λ(ω1, . . . , ωn), d) is the model of g∗ and hence of the nilmanifold N [5].
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Group Actions

Marc Stephan

The aim of this talk is to study various interactions between G-spaces, i.e. topo-
logical spaces equipped with a continuous action by a topological groupG, rational
homotopy theory and geometry. Concretely, we’ll discuss the toral rank of a space,
the Borel construction, equivariant minimal models for finite group actions and
Hamiltonian actions in symplectic geometry. The main reference is [1].

1. Toral rank

An early interaction between rational homotopy theory and geometry concerns
almost free actions by a k-dimensional torus T k. Recall that a group action on
a space X is called almost free if for every point x ∈ X , the subgroup fixing this
point is finite. For instance still open is Halperin’s Toral rank conjecture:
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Conjecture 1. Let X be a nilpotent finite CW complex with an almost free T k-
action, then dimH∗(X ;Q) ≥ 2k.

The rational toral rank rk0(X) of a space X is the maximal k such that there
exists a finite CW complex in the rational homotopy type of X, which admits an
almost free T k-action. For instance the rational toral rank of a compact connected
Lie group G equals the dimension of its maximal torus. This calculation is a
corollary of the following inequality.

Theorem 1 (Allday, Halperin (cf. [2], [1, Theorem 7.13])). Let X be a rationally
elliptic space with minimal model (ΛV, d). Then rk0(X) ≤ −χπ(X), where χπ(X)
denotes the homotopy Euler characteristic dimV even − dimV odd of X.

The proof of Theorem 1 involves the Borel construction defined next.

2. Borel construction

Let G be a topological group. The Borel construction of a G-space X is (the
total space XG := EG ×G X of) the fiber bundle EG ×G X → BG associated to
the universal principal G-bundle EG → BG. The equivariant cohomology of a
G-space, i.e. the cohomology of its Borel construction, is related to almost free
actions by Hsiang’s Theorem:

Theorem 2 (Hsiang (cf. [3], [2, Proposition 1])). Suppose a compact connected Lie
group G acts almost freely on a connected finite CW complex X. Then H∗(XG;Q)
is finite dimensional.

In the talk, the proof of Theorem 1 will be sketched using Theorem 2.

3. Equivariant minimal models

As background material for talk 5 “Geodesics and the Free Loop Space II”,
equivariant minimal models for finite discrete group actions will be introduced
following [1, p. 123-124].

4. Hamiltonian actions in symplectic geometry

After the “disconnected” excursion in section 3, we’ll conclude “smoothly” with
Hamiltonian actions by a torus T k on a closed symplectic manifold M and the
following consequence of a Hamiltonian action. For any field k of characteristic 0,
the equivariant cohomology H∗(MTk ; k) of M is isomorphic to the tensor product
of H∗(M ; k) and H∗(BT k; k) as k-vector spaces (cf. [4, Theorem 3.4]).
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Geodesics and the Free Loop Space I

Stephan Wiesendorf

Geodesics are the generalization of straight lines in curved spaces. As it is well
known, given two points x and y in the Euclidean space (Rn, 〈·, ·〉) there is a
unique path γ : [0, 1] −→ Rn of minimal length joining them, namely the straight
line γ(t) = x + t(y − x), which is uniquely determined by the vanishing of its
acceleration, i.e. d

dt γ̇ ≡ 0. This concept carries over to the general case of a Rie-
mannian manifold (M, g) with Levi-Civita connection ∇, where a smooth path
γ : [a, b] −→ M is said to be a geodesic if its intrinsic acceleration vanishes, i.e.
∇∂t

γ̇ ≡ 0. It turns out that this definition is well adapted in the sense that locally
the picture is the same as in the Euclidean space. Indeed, geodesics are exactly
those paths of constant speed, which locally minimize the distance between their
points and given two points in M sufficiently close to each other, there is up to
parameterization a unique geodesic joining them.

It is a very classical problem in differential geometry to estimate the number
of geometrically distinct periodic geodesics on a complete Riemannian manifold
(M, g), where two periodic geodesics γ1, γ2 : R −→ M are called geometrically
distinct if γ1(R) 6= γ2(R). If the manifold M is compact, there are many results
available and this talk deals with three of the most important ones. In chronolog-
ical order the first common result in this direction is the theorem of Hadamard
from 1898 [3], which is sometimes also referred to Cartan, that states that any non-
trivial conjugacy class of the fundamental group π1(M) of a compact Riemannian
manifold (M, g) contains a closed geodesic, i.e. the restriction of a periodic geo-
desic to a period, that is the shortest curve in this class. In the talk we will sketch
the elementary proof of Hadamard before we skip to a variational approach and
prove the theorem again using Morse-theoretical methods.

The most natural and successful way of thinking about closed geodesics is to
consider them as critical points of the energy functional on the free loop space ΛM ,
which is the space of absolutely continuous paths c : S1 ∼= [0, 1]/∂([0, 1]) −→ M ,

such that the energy functional E : ΛM −→ R, given by E(c) =
∫ 1

0 ‖ċ‖2dt, is
finite. Roughly speaking this is just the largest space on which the energy make
sense. The space ΛM carries the structure of a Hilbert manifold, such that:

• ΛM is homotopy equivalent to the space MS1

of continuous maps S1 −→
M with the compact open topology,
• E : ΛM −→ R is smooth and the critical points are exactly the closed
geodesics,
• E satisfies Condition (C) of Palais and Smale [8] if M is compact.
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Using the generalization of the theory of Morse [7], [6] to Hilbert manifolds [8]
one can therefore apply critical point theory to detect closed geodesics as critical
points of the energy E. The utility of this point is reflected for instance by the
fact, that then it is clear that E assumes its minimum on any connected compo-
nent, what is just the statement of the theorem of Hadamard stated above. The
most important advantage of this approach is perhaps that dealing with closed
geodesics becomes more intuitive. If one think about an elastic strip placed in a
manifold, the strip will be tightened until it cannot be tightened any more and in
that case it describes a geodesic loop. Conceptually this is exactly what the flow
of the negative gradient of the energy functional does. Of course, this principle
would produce only constant paths if there were no topology to pull against. But
in the case of a simply connected compact manifold there are always topological
constraints to pull against as one can deduce from the long exact homotopy se-
quence of the fibration ΛM −→ M , c 7→ c(0), with fiber homotopy equivalent

to (M,p)(S
1,∗) for a fixed point p ∈ M . Since the fibration admits a section

M −→ ΛM , that maps a point p to the constant path cp ≡ p, the sequence splits,

i.e. πk(ΛM) ∼= πk((M,p)(S
1,∗))⊕ πk(M) ∼= πk+1(M)⊕ πk(M). By Poincaré dual-

ity and the Hurewicz theorem these groups cannot all be trivial. Thus, applying
the negative gradient flow to a non-trivial homotopy class in M of minimal di-
mension, regarded as a class in ΛM , this class will hang up at a non-trivial closed
geodesic. This proves the second theorem of the talk, which is due to Lyusternik
and Schnirelmann in 1930 [5] and says that every compact simply connected Rie-
mannian manifolds admits at least one non-trivial closed geodesic.

Probably the most beautiful and important result in this direction is the the-
orem of Gromoll and Meyer from 1969 [2] due to which there are infinitely many
geometrically distinct periodic geodesics on every compact simply connected Rie-
mannian manifold M for which the sequence {bk(ΛM)}k of Betti numbers with
respect to a field of characteristic zero is not bounded. The proof of this theorem
requires results of Bott [1] on the index and nullity of iterated closed geodesics
and an extension of non-degenerate Morse theory to the degenerated case. We
will discuss the idea of the proof and some applications. The Gromoll-Meyer the-
orem will be a focus of the talk because this is where rational homotopy theory
comes into play. Namely, in 1976 [9] Vigué-Poirrier and Sullivan proved that the
sequence of Betti numbers of the free loop space ΛM is unbounded if and only
if the real cohomology ring H∗(M ;R) requires at least two generators. Since the
last statement as well as the property of admitting infinitely many geometrically
distinct closed geodesics is invariant with respect to the lift to finite coverings the
theorem can be extended to the case of a finite fundamental group. Thus, the
problem is still open in the case where π1(M) is infinite but has only finitely many
conjugacy classes up to powers, or if π1(M) is finite but the real cohomology of
the universal cover requires only one generator.
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Appl. 5 (1898), 27–73.

[4] W. Klingenberg, Lectures on closed geodesics, Die Grundlehren der Math. Wissenschaften,
vol. 230, Springer-Verlag, Berlin and New York, 1978.

[5] L. Lyusternik and L. Schnirelmann, Topological methods in the calculus of variations, Gos-
ndarstv. Izdat. Tehn-Teor. Lit., Moscow, 1930.

[6] J. Milnor, Morse theory, Ann. of Math. Studies no. 51, Princeton University Press, Prince-
ton, 1963.

[7] M. Morse, The calculus of variations in large, Amer. Math. Soc. Colloq. Publ. 8, 1934.
[8] R. Palais, Morse theory on Hilbert manifolds, Topology 2 (1963), 299–340.
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Geodesics and the Free Loop Space II

Varvara Karpova

The aim of this talk was firstly to present the Sullivan-Vigué Poirrier theo-
rem and to comment briefly on its proof. In a second part, we concentrated on
analogues of the results surrounding the Closed Geodesic Problem for A-invariant
geodesics. We give a quick overview of our presentation here.

LetM denote a compact simply connected Riemannian manifold. The Gromoll-
Meyer theorem establishes a relation between the Betti numbers of the free loop
space LM of M and the number of geometrically distinct geodesics on the mani-
fold. More precisely, it tells us that if the sequence of Betti numbers of LM is not
bounded, then the manifoldM admits infinitely many geometrically distinct closed
geodesics. A natural thing to wonder about are then the conditions under which
the Betti numbers of the free loop space are unbounded. In [7] Micheline Vigué
Poirrier and Denis Sullivan provided a solution to this problem, using algebraic
minimal models for LM . Another reasonable question to ask in this context is
whether there exist analogues of Gromoll-Meyer and Sullivan-Vigué Poirrier theo-
rems for A-invariant geodesics, where A is a (finite-order) isometry of the manifold.

Suppose we are given a simply connected spaceM of finite rational type. Recall
that the free loop space LM of M is constructed as the pullback

LM //

p0

��

M I

(p0,p1)

��

M
∆

// M ×M,

where M I denotes the path space on M , ∆ is the diagonal map and pi(λ) = λ(i)
for all λ ∈ M I , i = 0, 1. In order to construct a Sullivan model for LM , one
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should remember that the model of a pullback is given by the pushout of models.
Roughly speaking, if (ΛV, d) denotes a minimal model for the space M , then a
model for its free loop space will be of form (Λ(V ⊕ sV ), D), where sV is the
suspension of the graded vector space V , and the definition of the differential D
involves a certain derivation of degree −1 (see [1] for details). With an appropriate
algebraic model of LM at hand, one is well equipped to unravel the details of the
proof of the following theorem by Sullivan and Vigué Poirrier, which provided a
solution to the Closed Geodesic Problem for a large class of spaces.

Theorem 3 ([7, 1]). Let M be a simply connected space with minimal model
(ΛV, d), and whose rational cohomology is finite dimensional. The following con-
ditions are equivalent.

(1) The sequence of rational Betti numbers of LM is unbounded.
(2) The cohomology algebra H∗(M ;Q) requires at least two generators.
(3) The dimension of πodd(M)⊗Q is at least two, i.e., at least two generators

in (ΛV, d) are exterior.

Let us now turn to the analogues of the results surrounding the Closed Geodesic
Problem for A-invariant geodesics.

Definition 1. Let A be an isometry of a compact simply connected Riemannian
manifold M . A geodesic γ : R → M is called A-invariant if there exists some
T ∈ R such that γ(t+ T ) = A(γ(t)) for all t ∈ R.

The A-invariant analogue of the free loop space, LMA, is given by a pullback
diagram similar to the above, where the diagonal ∆ = (Id, Id) is replaced by the
map (A, Id).

In [4], Karsten Grove studied existence conditions for A-invariant geodesics
on connected compact Riemannian manifolds. Together with Stephen Halperin,
Grove used results of [4] to obtain an existence theorem for A-invariant geodesics
on a compact rationally elliptic manifold in [2].

Moreover, an A-invariant analogue of the Gromoll-Meyer theorem was provided
by Minoru Tanaka in [6].

Theorem 4 ([6]). Let M be a compact simply connected Riemannian manifold.
If the Betti numbers of LMA are unbounded, then M admits infinitely many
geometrically distinct A-invariant geodesics.

Since the isometries form a compact Lie group whose elements of finite order
are dense ([5]), the isometry A of M can be assumed to be of a finite order k ≥ 1.
In this situation, the cyclic group G generated by A acts on M . The theory of
algebraic models tells us how to construct a G-equivariant minimal model (ΛV, d)
for M , where the vector space V decomposes as V = V A ⊕ J , the direct sum of
its subspace V A generated by A-invariant vectors and of its complement. Using
this decomposition, one can then produce an algebraic minimal model for the
A-invariant free loop space LMA (see [1] for details).
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This model can be employed to give criteria under which the Betti numbers of
LMA are unbounded. Thereby, the following A-invariant versions of the Sullivan-
Vigué Poirrier theorem were obtained by Grove, Halperin and Vigué Poirrier.

Theorem 5 ([3]). Let M be a simply connected compact Riemannian manifold.
Let A be an isometry and let (π∗(M) ⊗ Q)A denote the A-invariant part of ra-
tional homotopy. If dim(πodd(M) ⊗ Q)A ≥ 2, then the Betti numbers of LMA

are unbounded, and M admits infinitely many nontrivial geometrically distinct
A-invariant geodesics.

Theorem 6 ([2]). Let M be a simply connected compact Riemannian manifold,
and let A be an isometry. If M is rational hyperbolic, then the Betti numbers
of LMA are unbounded, and M admits infinitely many geometrically distinct A-
invariant geodesics.
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Geodesic Flows

Nadine Große

The aim of this talk was to show that one can conclude the homotopy type of
a manifold from ’special’ properties of a fixed metric on this manifold. We stick
to a particular example and give an overview on a result by Paternain:

Theorem 7. [3, Thm. 3.2] Let (M, g) be a closed simply-connected Riemannian
manifold with zero topological entropy. Then M is rationally elliptic.

Topological entropy is a notion in the theory of flows in dynamical systems. In
the context of the Theorem above this is meant to the entropy of the geodesic flow
of M . We shortly introduce this notion:
The geodesic flow is the map φt : TM → TM, θ = (p, v) 7→ (γv(t), γ̇v(t)) where
γv(t) is the unique geodesic starting at γv(0) = p with the velocity vector γ̇v(0) = p.
Since geodesics have constant speed φt restricted on the sphere bundle SM =
{(p, v) ∈ TM | |v| = 1} is also an endomorphism. In order to define the entropy,
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one fixes a distance function d on TM . From that we can define a family of new
distance functions dT (θ1, θ2) = max0≤t≤T d(φt(θ1), φt(θ2)) where θ1, θ2 ∈ TM .

The topological entropy is now defined (cf. [1, Chap. 3.2]) as

htop(g) := lim
ǫ→0

lim sup
T→∞

1

T
min#{balls of radius ǫ w.r.t. dT that cover SM}

︸ ︷︷ ︸
monotonically decreasing as function in ǫ

To prove in the desired theorem that the manifold is rationally elliptic, we go for
the following criterion for rational ellipticity:

Theorem 8. [5, Thm. 2.7.4] If (M, g) is a simply-connected closed Riemannian
manifold whose Betti numbers of the loop space have subexponential growth, than
M is rationally elliptic.

In the following we sketch the main ingredients of the proof:

1. Morse theory of the path space [7]
Fixing two points p, q ∈M we consider ΩM (p, q) which is the space of all piecewise
smooth paths γ : [0, 1] → M from p to q. The aim is to use Morse theory on the
energy functional E defined on that space. The critical points of E are precisely
the geodesics from p to q. But only for generic (i.e. not conjugate) points these
critical points are nondegenerate. In that case, Morse theory can be applied.
Restricting E to the subspace Ωλ

M (p, q) ⊂ ΩM (p, q) of paths of length ≤ λ, we
obtain that Ωλ

M (p, q) has the homotopy type of a finite CW -complex and, thus,
we get (for generic p, q ∈M):

Morse inequality : nλ(p, q) := #{geodesics from p to q of length ≤ λ}
= #{(π ◦ φ1)−1(q) ∩ TpM≤λ}
≥

∑
bi(Ω

λ
M (p, q))

where π : TM →M and TpM≤λ := {(p, v) ∈ TM | |v| ≤ λ}.
2. Gromov’s theorem

The right handside of the Morse inequality from above is already near to what we
want to have in order to prove the rational ellipticity of M . But we actually need
bi(Ω(M) = (biΩM (p, q)) instead of bi(Ω

λ
M (p, q)). This is given by

Theorem 9. [6, 7.4], [2, Prop. 2.1] Let (M, g) be a simply-connected closed Rie-
mannian manifold. Then there is a constant C > 0 such that for all points p, q ∈M
that are not conjugate and for any i ∈ N with λ ≥ Ci it holds

bi(ΩM (p, q)) ≤ bi(Ωλ
M (p, q)) = bi(Ω(M).

The assumption of simply-connectedness is crucial in the proof of the above
theorem since it uses the existence of a homotopy equivalence fromM toM which
maps the 1-skeleton of M to a point.
3. Link to volume growth under the geodesic flow and Yomdin’s Theo-

rem

Connecting the Morse inequality with Gromov’s Theorem we have nλ=Cm(p, q) ≥
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∑m
i=0 bi(ΩM) as long as q is not conjugate to p. But only a measure zero subset

of M fails to be conjugate to a fixed p (cf. Sard’s Theorem and [7]). Thus, we can
integrate and get:

vol(M)

m∑

i=0

bi(ΩM) ≤
∫

M

nCm(p, q)dq =

∫

TpM≤Cm

| det dθ(π ◦ φ1)|dθ

≤
∫

TpM≤Cm

| det dθφ1|dθ =
∫ Cm

0

∫

SpM

| det dθφt|dθdt

≤
∫ Cm

0

voln−1(φt(SpM)dt.

Thus, in this last step the right side has to be estimated which is done by
Yomdin’s Theorem [4, Cor. 1.6]:

lim sup
m→∞

1

m
log

m∑

i=0

bi(ΩM) ≤ lim sup
m→∞

1

m
log vol(M)−1

∫ Cm

0

vol(φt(SpM))dt

≤ max{0, lim sup
m→∞

1

m
log voln−1(φCm(SpM))}

(by Yomdin‘s theorem) ≤ htop(g) = 0.

�
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Formality and Kähler Manifolds

Pascal Lambrechts

In this talk we explain that the rational homotopy types of compact Kähler mani-
folds (which are complex manifolds admitting a Riemannian metric strongly com-
patible with the complex structure) are very restricted. Indeed they are formal,
which means that all the rational homotopy type is encoded in the cohomology
algebra. Another fact, more classical, is that compact Kähler manifolds satisfy
the Hard Lefschetz property.
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A complex manifold is a manifold equipped with a holomorphic atlas modeled
on Cn. Examples of such manifolds are:

• complex tori Cn/Γ where Γ is a rank 2n lattice in Cn;
• the Hopf manifold (Cn \ {0})/ ≃ where ≃ is the relation generated by
(z1, . . . , zn) ≃ (z1/2, . . . , zn/2). This manifold is homeomorphic to S1 ×
S2n−1;
• smooth complex projective varieties, that is: smooth sets of solutions in
Pn(C) of systems of homogeneous polynomial equations;
• the Kodaira-Thurston manifold obtained as the nilmanifold KT := R4/Γ
where Γ is a group with 4 generators acting on R4 by sending (t1, t2, t3, t4)
to, respectively, (t1 + 1, t2, t3, t4), (t1, t2 + 2, t3, t4), (t1, t2, t3 + 1, t4), and
(t1, t1 + t2, t3, t4 +1). Note that KT is diffeomorphic to the product of S1

with an S1−bundle over S1 × S1 with non trivial Euler class.

The tangent bundle TM of a complex manifold admits a self-map

J : TM → TM

such that J2 = −1, corresponding of course to the multiplication by
√
−1 on

tangent vectors. A Riemannian metric g on M is said to be Kähler if it is strongly
compatible with the complex structure J in the sense that

• g(Jv, Jw) = g(v, w), and
• the Levi-Civita parallel transport associated to g preserves J .

Such a Riemannian metric g compatible with J is completely equivalent to the
data of a smooth 2-form ω ∈ Ω2(M) defined by ω(v, w) = g(v, Jw) such that

• ω(Jv, Jw) = ω(v, w), and
• dω = 0.

Such a form is called a Kähler form onM , and (M,ω) is called a Kähler manifold.
For example Cn and Pn(C) are Kähler manifolds: it is not difficult to construct

explicit Kähler 2-forms on those. Also it is easy to show that a holomorphic
submanifold of a Kähler manifold is also Kähler, with a Kähler form obtained by
restriction. Hence every smooth projective complex variety is Kähler.

Not every complex manifold admits a Kähler form; actually there are strong
topological restrictions on compact Kähler manifold. In particular it must satisfy
the following

Theorem 1. (Hard Lefschetz)
Let (M,ω) be a compact Kähler manifold of complex dimension n. Then it satisfies
the hard Lefschetz property which means that for all k ≥ 0, the map

Lk : Hn−k(M)→ Hn+k(M), x 7→ x.[ω]k

is an isomorphism.

The proof of this theorem is not easy. It is based on Hodge theory.
In particular [ω] 6= 0 in H2(M). Thus the Hopf manifold diffeomorphic to

S1 × S2n−1 is not Kähler for n > 1.
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On the other hand the Kodaira-Thurston manifold satisfies the hard Lefschetz
property. IndeedKT is a nilmanifold whose associated Lie algebra is R〈X,Y, Z, T 〉
with [X,Y ] = T and the Lie brackets of all the other pairs of generators are zero.
Therefore a Sullivan model for KT is given by

(∧(x, y, z, t) , d(t) = xy, d(x) = d(y) = d(z) = 0)

with x, y, z, t of degree 1. It is straightforward to check that the 2-form ω corre-
sponding to xy + zt induces the Hard Lefschetz isomorphisms.

Actually compact Kähler manifolds need to satisfy another more subtle topo-
logical condition: they need to be formal.

Definition 1. A CDGA (commutative differential graded algebra) (A, d) is formal
if it weakly equivalent as a CDGA to its cohomology algebra, in other words if there
exists a zig-zag of CDGA quasi-isomorphisms

(A, d)
≃← · · · ≃→ (H(A, d), 0).

A space X is formal if the CDGA APL(X) is formal.

For example the Kodaira-Thurston manifold is not formal. Indeed using the
above Sullivan model of KT, it is not difficult to see that it cannot be weakly equiv-
alent to its cohomology algebra. Actually there is a non-trivial Massey product
〈x, y, x〉 in the cohomology of KT, and it is easy to check that this is an obstruction
to formality. Using the same line of argument, actually one can prove

Theorem 2 ([1]). A nilmanifold is formal if and only if it is abelian.

We have the following very important

Theorem 3 ([2]). Compact Kähler manifolds are formal.

The proof of this theorem is based on the “∂∂ lemma” that we explain now. Let
M be a complex manifold. The CDGA Ω(M ;C) of smooth forms with complex
valued is bigraded where

Ωp.q(M)

is the C∞(M,C)-module generated by forms which locally are

dzi1 ∧ dzi2 ∧ · · · ∧ dzip ∧ dzj1 ∧ dzj2 ∧ · · · ∧ dzjq
for some holomorphic coordinates (z1, . . . , zn). Then the differential d decomposes
as

d = ∂ + ∂

where ∂ and ∂ are of bidegree (1, 0) and (0, 1) respectively.

Lemma 4. (∂∂ lemma)
Let M be a compact Kähler manifold and let α ∈ Ωp,q(M) ∩ ker(∂) ∩ ker(∂).

If α ∈ im(∂) then α ∈ im(∂∂). If α ∈ im(∂) then α ∈ im(∂∂).
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The proof of this lemma is based on the fact that on a Kähler manifold the
laplacian associated to ∂ and ∂ agree, ∆∂ = ∆∂ . Using then Hodge theory (because
M is compact) some Green operators are used to build an explicit β such that
α = ∂∂(β).

Taking this “∂∂ lemma” for granted, the proof of formality of compact Kähler
manifold is easy. We consider a zigzag of CDGA

(H(Ω∗,∗, ∂), 0)
ρ← (Ω∗,∗ ∩ ker(∂), ∂)

j→֒ (Ω∗, d) ≃ APL(M ;C).

The ∂∂ lemma is used to prove that the canonical projection ρ commutes with the
differentials and that H(ρ) and H(j) are both injective and surjective. Therefore
the above zigzag gives a weak equivalence between APL(M) and a CDGA with
differential 0, which implies formality.
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Spectral Sequences and Models

Joana Cirici

1. Introduction

From Sullivan’s theory, we know that the de Rham algebra of a manifold deter-
mines all its real homotopy invariants. In addition, the Formality Theorem of [1],
exhibits the use of rational homotopy in the study of complex manifolds, in that
it provides homotopical obstructions for the existence of Kähler metrics.

Bearing these results in mind, and with the objective to study complex homo-
topy invariants, Neisendorfer and Taylor [5] define the Dolbeault homotopy groups
of a complex manifold by means of a bigraded model of its Dolbeault algebra of
forms. Not only interesting in themselves, these new invariants prove to be use-
ful in the computation of classical invariants such as the real homotopy or the
cohomology of the manifold.

The Frölicher spectral sequence provides a connection between Dolbeault and de
Rham models, and indicates an interplay between models and spectral sequences.
In [3], Halperin and Tanré analyse this issue in the abstract setting, by constructing
models of filtered cdga’s and establishing a relationship with the bigraded minimal
models of each stage of their associated spectral sequences. This allows the study of
any spectral sequence coming from a filtration of geometric nature. The Dolbeault
homotopy theory of Neisendorfer and Taylor fits naturally in this wider context.

As an application, Tanré studies in [6] the Borel spectral sequence associated
with an holomorphic fibration, and constructs a Dolbeault model of the total space
from those of the fiber and the base. Also, the filtered model of Halperin-Stasheff
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that controls the formality of a cdga fits into this context by means of the trivial
filtration.

Our objective is to present the homotopy theory of filtered cdga’s, focusing on
its applications to the study of complex manifolds.

2. Homotopy theory of filtered cdga’s

A filtered cdga (A, d, F ) is a cdga (A, d) together with a decreasing filtration

0 ⊆ · · · ⊆ F p+1A ⊆ F pA ⊆ · · · ⊆ A,
such that the differential and the product are compatible with the filtration.

Any filtered cdga has an associated spectral sequence, each of whose stages is
a bigraded differential algebra. Furthermore, every map of filtered cdga’s com-
patible with filtrations induces a map between their respective spectral sequences.
Such a map is an Er-quasi-isomorphism if the induced map at the r-stage is a
quasi-isomorphism of bigraded algebras. Every Er-quasi-isomorphism is a quasi-
isomorphism but the converse is not true in general.

In order to develop an homotopy theory for filtered cdga’s, we generalize Sul-
livan’s theory and introduce Er-minimal models which we define step by step as
follows. An Er-minimal extension of degree n and weight p of a filtered cdga
(A, d, F ) is a filtered cdga A⊗dΛ(V ), where V is a finite dimensional vector space
of degree n and pure weight p, satisfying

dV ⊂ F p+r(A+ ·A+) + F p+r+1A.

The filtration on A ⊗ Λ(V ) is defined by multiplicative extension. All cdga’s are
augmented, and A+ denotes the kernel of the augmentation. An Er-minimal cdga
is the colimit of a sequence of Er-minimal extensions, starting from the base field.
It follows that the differentials of the associated spectral sequence of an Er-minimal
cdga satisfy d0 = · · · = dr−1 = 0, and dr is decomposable.

Theorem 1 (Halperin-Tanré). For every r ≥ 0 and every filtered cdga (A, d, F )
there exists an Er-minimal model: that is an Er-minimal cdga (M,D,F ) together
with an Er-quasi-isomorphism ψ : (M,D,F )→(A, d, F ). In particular, the induced
map Er(ψ) : (Er(M), dr)→(Er(A), dr) is a bigraded model of (Er(A), dr).

Observe that for the trivial filtration, an E0-minimal model is a Sullivan model,
and so the above theorem can be viewed as a generalization of the classical theory.

The homotopical approach of [2] proves to be convenient in this situation. Define
r-homotopy equivalences by means of a filtered path object Λ(t, dt), with t of
weight 0 and dt of weight r. Every Er-minimal cdga M is cofibrant : any Er-
quasi-isomorphism w : A→ B induces a bijection between classes of maps modulo
r-homotopy equivalence, w∗ : [M,A]r

∼−→ [M,B]r. In addition, Er-minimal cdga’s
are minimal, in that every Er-quasi-isomorphism between Er-minimal cdga’s is an
isomorphism. The existence of Er-minimal models endows the category of filtered
cdga’s with the structure of a Sullivan category. As a result, for all r ≥ 0, we
obtain an equivalence of categories

(Er-Min/ ∼r) −→ Hor (FCDGA) = FCDGA[E−1
r ],
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between the quotient category of Er-minimal cdga’s modulo r-homotopy equiv-
alence, and the localized category of filtered cdga’s with respect to Er-quasi-
isomorphisms.

This provides a way to derive the functor of filtered indecomposables with
respect to Er-quasi-isomorphisms, obtaining a well defined notion of Er-homotopy
groups, as a new family of invariants for filtered cdga’s.

Also, we have the following filtered version of formality. We say that a filtered
cdga (A, d, F ) is Er-formal if there is a chain of Er-quasi-isomorphisms

(A, d)
∼←− · · · ∼−→ (Er+1(A), dr+1).

3. Applications

We next present some applications of the homotopy theory of filtered cdga’s to
the study of complex manifolds.

Dolbeault homotopy. Let X be a complex manifold. Its complex of de Rham
algebra of C∞ differential forms admits a bigrading by forms of type (p, q),

AdR(X) =
⊕
Ap,q(X).

The differential decomposes as d = ∂ + ∂. The Frölicher spectral sequence is the
spectral sequence associated to AdR(X), with the filtration defined by the first
degree. Its 0-stage is the Dolbeault algebra (E0, d0) = (A∗,∗(X), ∂), and its 1-
stage is the Dolbeault cohomology E1 = H∗,∗

∂
(X). It converges to the de Rham

cohomology H∗
dR(X). The following result is a direct consequence of Theorem 1

applied to the Frölicher spectral sequence, and taking r = 0.

Theorem 2 (Neisendorfer-Taylor). There exists a de Rham model (MX , D) of X
together with a filtration such that (E0(MX), d0) is a Dolbeault model of X.

In particular, given a Dolbeault model, one can build a de Rham model by
defining a perturbation of its differential. If E1(AdR(X)) = E∞(AdR(X)), then
AdR(X) is E0-formal if and only if the manifold X is strictly formal in the sense
of [5]. In particular, compact Kähler manifolds are E0-formal.

Fibrations. Consider an holomorphic fibration X0 → X → Y of compact, con-
nected, nilpotent complex manifolds. Assume as well that X0 is Kähler, and that
π1(Y ) acts trivially on H(X0). In [4], Borel constructs a filtration of the Dolbeault
algebra of X such that its associated spectral sequence converges to H∗,∗

∂
(X), and

E1 = (AdR(Y ), ∂)⊗H∂(X0). The following result is a consequence of Theorem 1
applied to the Borel spectral sequence, with r = 1.

Theorem 3 (Tanré). With the previous assumptions, there exists a Dolbeault
model MX of X together with a filtration such that (E1(MX), d1) = (MY , ∂)⊗MH,

where (MY , ∂) is a Dolbeault model of Y andMH is a Sullivan model of H∗(X0;C).
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Therefore a Dolbeault model for X can be built by taking the tensor product of
a model of H∗(X0;C) by a Dolbeault model of Y , and defining a perturbation of
the differential. An interesting application to the above result concerns compact
connected Lie groups of even dimension.

Theorem 4 (Tanré). Let T → G → G/T , where G is a compact connected Lie
group of even dimension, and T a maximal torus. Then G is Dolbeault formal if
and only if the Frölicher spectral sequence satisfies E2(G) = E∞(G).

This result facilitates finding examples of compact complex manifolds whose
spectral sequence does not collapse at the second stage.
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Formality and Symplectic Manifolds I

Victor Turchin

In this note we review some major results about the topological properties of closed
symplectic manifolds.

A symplectic manifold is a pair (M,ω) where M is a smooth manifold and ω
is a closed and non-degenerate at every point 2-form on M . Therefore symplectic
manifolds are always of even dimension dimM = 2m and are naturally oriented
since ωm can be viewed as a volume form.

First we recall the examples of Kodaira-Thurston [10] and McDuff [7] of closed
symplectic but not Kählerian manifolds. Later Rudyak and Tralle [9] and indepen-
dently Babenko and Taimanov [2] showed that the Kodaira-Thurston and McDuff
manifolds are not formal. This shows that the class of symplectic manifolds is
larger than the class of Kählerian manifolds and moreover symplectic manifolds
can be non-formal contrary to the Kählerian ones.

Given a symplectic manifold (M,ω) of dimension 2m one can consider a map
in the de Rham cohomology

Hi(M)→ H2m−i(M), i = 0 . . .m,

given by multiplication by [ω]m−i. If for all i = 0 . . .m this map is an isomor-
phism, the manifold (M,ω) is said to satisfy the Hard Lefschetz property (HL).
All Kählerian manifolds satisfy HL. One can also show that HL implies that the
rank of the cohomology of M in any odd degree is always even (hint: define a
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natural skew-symmetric bilinear form on H2i−1(M) and show that it follows from
HL that this form is non-degenerate). Thus HL is a topological obstruction for a
symplectic manifold to be Kählerian.

Non-simply connected case. A well known example of a closed symplectic non-
Kählerian manifold is the Kodaira-Thurston manifold [10]. This manifold KT is a
quotient of R4 by some subgroup Γ of affine transformations. More explicitly KT
is the quotient of the group

G =








1 x1 x2 0 0
0 1 x3 0 0
0 0 1 0 0
0 0 0 1 x4
0 0 0 0 1




∣∣∣∣∣∣∣∣∣∣

(x1, x2, x3, x4) ∈ R4





by its subgroup Γ of matrices with integer coefficients. One can easily see that the
rank of H1(KT ) is 3, and therefore KT can not be HL.

It was shown, for example, in [2, 9] that KT has non-trivial triple Massey
products and thus is not formal. Its non-formality is also a consequence of a more
general result, since KT is a nilmanifold.

Simply connected case. McDuff [7] was the first to provide examples of simply
connected closed symplectic non-Kählerian manifolds. The construction of McDuff
is based on symplectic blow up.

Let i : (M,ω) →֒ (X, σ) be a symplectic embedding, which means i∗σ = ω and
i is a smooth embedding. Gromov [4] (and in more detail McDuff [7]) defined a

blow up (X̃, σ̃) of (X, σ) along (M,ω). First notice that the normal bundle of M
in X is symplectic and therefore carries a natural unique up to homotopy complex

structure. The blow up π : X̃ → X has the property π−1(X \M) ∼= X \M , and
π−1(M) is a fiber bundle over M with fiber CP k−1 (where 2k is the codimension
of M in X) obtained as the projectivization of the normal bundle viewed as a
complex one. McDuff shows that the blow up does not change the fundamental

group π1(X̃) = π1(X) and as a vector space

H∗(X̃) = H∗(X)⊕H∗(M) · a⊕H∗(M) · a2 ⊕ . . .⊕H∗(M) · ak−1,

where deg a = 2. In [2, 9] the authors describe the multiplicative structure on

H∗(X̃). On the other hand by a theorem of Tischler [11] any closed symplectic
manifold with an integral symplectic form can be symplectically embedded in CPN

for sufficiently large N . Gromov showed [4] that one can take N ≥ 2m+1, where
2m is the dimension of the manifold. From this result KT can be embedded in
CPN , N ≥ 5. Denote by C̃PN the blow up of CPN along KT . McDuff concludes

that π1(C̃P
N ) = 0 and H3(C̃PN ) has rank 3. Thus C̃PN , N ≥ 5, are simply

connected but are not HL and therefore cannot be Kählerian.
For the formality, Babenko-Taimanov [2] and independently Rudyak-Tralle [9]

show that if the codimension of M in X is ≥ 8, and M has a non-trivial triple

Massey product, then so does X̃. As a corollary C̃PN , N ≥ 6, are not formal.
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With a little bit more effort it is shown both in [2] and [9] that C̃P 5 also has a
non-trivial triple Massey product.

At this point it is interesting to mention a work of Lambrechts and Stanley [5]

that describes a rational model for the blow up X̃ in caseM has a sufficiently high
codimension.

Hard Lefschetz property versus formality. One can ask what is the relation be-
tween HL and formality for the symplectic closed manifolds. But as it turns out
neither property implies the other. Gompf [3] among other things provided exam-
ples of 6-dimensional (and therefore formal) simply connected closed symplectic
manifolds that are not HL. On the other hand Cavalcanti [1] constructed non-
formal symplectic manifolds satisfying HL. Gompf’s construction is interesting to
be mentioned since it provides a wide variety of symplectic manifolds. He defines
a connected sum of symplectic manifolds along a codimension 2 submanifold. The
construction works only in codimension 2 since only 2-disc can be symplectically
inversed. Using this method he constructed symplectic 4-folds homeomorphic, but
not diffeomorphic to Kählerian manifolds.

Formalizing tendancy. We mention that one still has some non-trivial “correla-
tion” between formality and being symplectic closed. This phenomenon was stud-
ied by Lupton and Oprea in [6]. For example they show that any simply connected
coformal symplectic closed manifold is always formal. They also show that any
simply connected closed symplectic manifold that admits a pure minimal model is
formal. As a consequence any homogeneous symplectic space is formal. Actually
it was shown in [8] that if G/U is symplectic and G is semisimple, then G/U is
Kählerian. The latter result generalizes Borel’s theorem who considered U to be
a maximal torus in G.
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Formality and Symplectic Manifolds II

Achim Krause

This talk was about further investigation of the difference between symplectic and
Kähler manifolds. As the cutting and gluing constructions such as forming con-
nected sums from real geometry do not preserve symplectic structures, another
method for constructing new symplectic manifolds is needed. This is given by a
generalization of the complex blow-up. The complex blow-up is a construction
which comes originally from algebraic geometry, but has some applications in dif-
ferential geometry as well. Roughly spoken, one replaces a complex submanifold
of a given complex manifold with the projectivization of the (complex) normal
bundle of the embedding, which yields a new complex manifold, called the blow-
up of the manifold along the submanifold. One can see that one does not need
to know the complex structures of the manifolds to get the real diffeomorphism
type of the blow-up, but only the complex structure of the normal bundle. Thus,
one can perform this construction as soon one knows a complex structure on the
normal bundle of the embedding. But this is always the case in the situation of
a symplectic manifold and the embedding a symplectic submanifold, since in this
case one has a symplectic form on the vector bundle, and after choosing a inner
product on each fiber, this is equivalent to a complex structure on the vector bun-
dle. According to a theorem of McDuff, one can always find a symplectic structure
again on this kind of blow-up (though not naturally), so practically this yields a
construction for new symplectic manifolds. If one would be able to determine
the rational homotopy type of this symplectic blow-up out of known data about
the embedding, this would be a great opportunity to analyze how the topology
of symplectic manifolds can look like. For example, the following question was
answered positively by McDuff using the blow-up construction: Are there simply-
connected symplectic manifolds with no Kähler structure? A generalisation of
this result is due to Babenko and Taimanov: There are even simply-connected
symplectic manifolds which are nonformal. To show this result, a model for the
symplectic blow-up was given in the talk. This was first published by Lambrechts
and Stanley in 2004 for the case that the dimension n of the embedded manifold
satisfied 2n + 3 ≤ m where m is the dimension of the ambient manifold. When
2n + 2 = m they constructed examples of homotopic embeddings with different
rational homotopy types of blow-ups. This comes from different isotopy classes
of embeddings, and apparently one cannot distinguish isotopy classes with ratio-
nal homotopy invariants, so their result seems best possible. The details of the
construction of their model are too complicated for a short talk, so only their
explicit result was given, along with a general idea. To determine the rational
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homotopy type of the blow-up, one can regard it as complement of the embedding
with the projectivized normal bundle of the embedding glued in along the bound-
ary. So it suffices to construct models for the embedding of the boundary in said
complement, and the gluing map of this boundary onto the projectivized normal
bundle. Both can be done explicitely. Finally, the example of McDuff was ana-
lyzed using this model. This is constructed by embedding the Kodaira-Thurston
manifold into some high-enough-dimensional complex projective space, and blow-
ing up along the embedding. Such an embedding exists because of an embedding
theorem for symplectic manifolds by Tischler. Using some facts about the Chern
classes of the Kodaira-Thurston manifold one is now able to construct the rational
homotopy type of this blow-up explicitely. The nonformality of the blow-up is now
expressed in some nonvanishing Massey product, and surprisingly one sees that
this Massey product is very similar to the one expressing the nonformality of KT.
Of course the blow-up has to be simply-connected, as one sees from the theorem
of Seifert and Van Kampen using the fact that the complex-projective spaces are
simply-connected. These facts illustrate an interesting phenomenon: Although
the blow-up has roughly the shape of the ambient space, such that the ambient
space for example determines simply-connectedness, the formality does often only
depend on the formality of the embedded submanifold.
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Curvature and Rational Homotopy I – Many manifolds with bounded

curvature and diameter

Benjamin Matschke

1. Introduction

Bounding geometric invariants of Riemannian manifolds (such as sectional cur-
vature, diameter or volume) often puts strong conditions on the diffeomorphism
types of manifolds that fulfill these bounds.

The first talk of this conference gave already several instances, valid for all
complete Riemannian manifolds M :

Theorem (von Mangoldt–Hadamard–Cartan). If sec(M) ≤ 0 then the universal
cover of M is diffeomorphic to Rn. In particular, π∗≥2(M) = 0.

Theorem (Bonnet–Myers). If sec(M) ≥ δ > 0 then diam(M) ≤ π/
√
δ. In

particular, M and its universal cover are compact and π1(M) is finite.

Theorem (Sphere Theorem, Rauch–Berger–Klingenberg, Brendle–Schoen). If
1/4 < sec(M) ≤ 1 and π1(M) = 0 then M is diffeomorphic to a sphere.
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Theorem (Cheeger–Peters). For all n,C,C′, D, V > 0 there are only finitely
many diffeomorphism types of closed smooth n-manifolds admitting a Riemannian
metric such that C ≤ sec(M) ≤ C′, diam(M) ≤ D, and vol(M) > V .

In a similar manner, Grove asked the following question (see [2]):

Question. Does the class M≤D
−1≤sec≤+1(n) of simply connected n-manifolds of di-

ameter at most D and sectional curvature bounded by −1 and +1 contain only
finitely many rational homotopy types?

In this talk we present the solutions of Fang & Rong [1] and Totaro [3] who
showed that the perhaps surprising answer to Grove’s question is in general No.

Theorem 1.1 (Fang–Rong). For all n ≥ 22 there exists a D > 0 such that

M≤D
−1≤sec≤+1(n) contains infinitely many rational homotopy types.

Remark. Their proof can be easily extended: Their examples already work in
dimension n ≥ 20, and they have already pairwise non-isomorphic rational coho-
mology rings.

Theorem 1.2 (Totaro). There exists a D > 0 such that M≤D
−1≤sec≤+1(7) contains

infinitely many rational homotopy types.

Again, Totaro’s examples have already pairwise different rational cohomology
rings.

2. Fang & Rong’s approach

The construction of Fang & Rong’s examples Mi, i ∈ N, works as follows.

(1) Find a suitable principal T 3-bundle of manifolds M → B, where T 3 is the
3-torus, and give M a T 3-invariant metric g.

(2) For suitable two-dimensional subtori Ti ⊆ T 3, let Mi :=M/Ti.
(3) Do the construction in such a way that Mi have pairwise distinct rational

homotopy.

Since the quotient maps M → Mi are Riemannian submersions and the 2-
dimensional subtori T 2 of T 3 can be parametrized by the compact Stiefel manifold
V3,2, one can deduce that the sectional curvatures of all such quotients M/T 2

are uniformly bounded from above and below. Hence by scaling the metric g
we can assume that −1 ≤ sec(Mi) ≤ +1 for all i. Let D := diam(M). Then
diam(Mi) ≤ D. In the construction we still need to take care of (3).

Fang and Rong start by constructing modelsMi that will be part of the minimal
models of Mi. First, let

M8 := (Λ(x1, x2, x3, y, z), d),

where |xi| = 0, d(xi) = 0, |y| = 5, d(y) = x21x
2, |z| = 7, d(z) = x41 + x42 + x43.

Lemma. There is a CW -complex X whose minimal model ME is M8.
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For this, first takeK(Z3, 2) = (CP∞)3 whose minimal model is (Λ(x1, x2, x3), 0).
Then take the pullback of the path-loop fibration PK(Z, 6) → K(Z, 6) along
the map K(Z3, 2) → K(Z, 6) that corresponds to the cohomology class x21x2 ∈
H6(K(Z3, 2),Z). This adds y with d(y) = x21x2 to the minimal model. Then add
z in an analogous way.

Let X(9) be the 9-skeleton of X .

Lemma. There exists a closed 19-manifold B and a map X(9) → B that induces
an isomorphism on π∗≤8.

For this, embed X(9) into R17, thicken it to an open set N , and take the double
B := N ∪∂N (−N). Then one can show with Morse theory that B has a handle
decomposition whose i-handles with i ≤ 9 correspond to the i-cells of X .

Now H2(B;Z) = Z3 = 〈x1, x2, x3〉. Define Mi to be the principal S1-bundle
over B with Euler class ei = ix1 + x2 − x3. Let Mi(8) be the submodel of the
minimal model of Mi generated by all elements in degree less then or equal to 8,
i.e. the minimal model of the 8’th space in the Postnikov tower of Mi.

Lemma. Mi(8) = (Λ(x1, x2, y, zi), d), where d(xi) = 0, d(y) = x21x2, d(zi) =
x41 + x42 + (ix1 + x2)

4.

For this, find a suitable morphism from the above to the relative minimal model
of Mi → B, which is (MB ⊗ Λ(t), d), d(t) = ei.

Lemma. If i 6= j then H∗≤8(Mi;Q) 6∼= H∗≤8(Mj;Q) as rings.

This is straightforward computation. Now we let M be the following pullback,
where f induces π2(B) ∼= π2(BT

3) = Z3,

M //

��

ET 3

��

B
f

// BT 3.

We write T 3 = {(z1, z2, z3) ∈ C3 | |zi| = 1}, and let Ti := 〈(1, z, z), (z, 1, zi)〉.
Lemma. Mi

∼=M/Ti.

For this, compare the Euler classes. The lemmas complete the proof of Fang–
Rong’s Theorem 1.1.

3. Totaro’s approach

The proof of Totaro’s Theorem 1.2 relies on the deeper theorem of Barge–
Sullivan, however it needs less computation and finds examples already in dimen-
sion 7. First, Totaro defines a cdga

H = λ(x0, . . . , x4)/R,

where |xi| = 2, R = 〈x2i = xi+1xi+2, xixj = 0 (j 6= i, i± 1)〉. This model satisfies
Poincaré duality. Hence by the Theorem of Barge–Sullivan there exists a closed
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6-manifold B whose minimal model is the minimal model of H . As above we find
a principal T 5-bundle M → B that is classified by the map B → BT 5 = K(Z, 2)5
induced by the cohomology classes x0, . . . , x4. Choose a T 5-invariant metric on
M and consider quotients of M by 4-subtori T 4 ⊂ T 5. Let Ta0,a1

be the subtorus
such that Ma0,a1

= M/Ta0,a1
→ B is the S1-bundle whose Euler class is e =

a0x0 − a1x1 + (a31/a
2
0)x3. We have H2(Ma0,a1

;Q) = H2(B;Q)/〈e〉.
Lemma. The map H2(B) ⊗H2(B) → H6(B) ∼= Q that sends a ⊗ b to a ∪ b ∪ e
factors through H2(Ma0,a1

)⊗H2(Ma0,a1
).

This gives a quadratic form on H2(Ma0,a1
) whose determinant is well defined inQ/(Q∗)2, and which can be computed to be −a0a1(Q∗)2. Hence different choices

of a0 and a1 give infinitely manyMa0,a1
with pairwise distinct rational cohomology

rings.
The curvature and diameter arguments are the same as in proof of Fang–Rong,

which finishes the proof of Totato’s Theorem 1.2.
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Curvature II

Sebastian Goette

This talk investigates the structure of open manifolds (i.e., complete, non-compact
Riemann manifolds without boundary) of nonnegative section curvature. It fol-
lows from the Soul Theorem [3] and the Splitting Theorem [4], [5] of Cheeger and
Gromoll that each such manifold M is diffeomorphic to N × T after passing to a
finite cover. Here, N is a simply connected open manifold with sec ≥ 0. By the
Soul Theorem, there exists a totally convex and totally geodesic closed subman-
ifold C ⊂ N , the soul, such that N is diffeomorphic to the normal bundle of C
in N . The manifold T is a torus. The diffeomorphism M → N × T can be chosen
such that a soul of M is mapped to C × T .

One may now ask the following question. Given a manifoldB = C×T of sec ≥ 0,
which vector bundles over B admit metrics of nonnegative sectional curvature?
Here and in the following, we will use C for simply-connected compact manifolds
of sec ≥ 0, and T will always denote some torus. Grove and Ziller have shown that
all vector bundles over S4 admit such metrics; however, the soul may contain many
planes of sectional curvature 0. In other words, the soul S4 may not be identic
to the original base space S4. On the other hand, Özaydin and Walschap have
proved that vector bundles over a torus T carry metrics of nonnegative sectional
curvature if and only if they are virtually trivial.
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Now let B = C × T and consider a vector bundle ξ : E(ξ) → B. If M = E(ξ)
admits a sec ≥ 0-metric, then there exists a soul S ⊂ M . After passing to a
finite cover, we may assume that M is diffeomorphic to N ′ × T ′ with N ′ simply-
connected and open, and with T ′ another torus. We also assume that a soul S
of M is mapped to C′ × T ′, with C′ a compact and simply-connected soul of N ′.

Forgetting about the sectional curvature now, we say that M splits if M is
diffeomorphic to N ′×T ′, where N ′ is the total space of a vector bundle over some
simply-connected compact manifold C′ and T ′ is a torus. On the other hand,
we say that M virtually comes from C if a finite cover of M splits as N × T
over a finite cover of C × T , where N → C is a vector bundle. We call (C, T, k)
splitting rigid if every vector bundle M = E(ξ) → B = C × T of rank k that
splits already virtually comes from C. If (C, T, k) is splitting rigid, then no vector
bundle ξ admits a sec ≥ 0-metric if its rational characteristic classes do not belong
to H•(C) ⊗ 1 ⊂ H•(C × T ). We apologize that we forgot to mention in the talk
that such vector bundles are called vampiric because they do not have souls.

There are many examples of manifolds that are splitting rigid, among them
spheres, projective spaces, and moreover, all known closed manifolds of positive
sectional curvature. But already some homogeneous spaces are not splitting rigid
for k ≥ 6.

In the following, let Char(X, k) ⊂ H•(X) denote the natural home of the ra-
tional Euler- and Pontrijagin classes of a real vector bundle of rank k over some
space X . In particular, Char(X, k) is the direct sum of certain even rational
cohomology vector spaces of X .

Theorem (Belegradek and Kapovich [2]). Let C be compact and simply-connected.
If all derivations of the coholomogy algebra (H•(C),⌣) of negative degree vanish
on Char(C, k) ⊂ H•(C), then (C, T, k) is splitting rigid for all tori T .

The proof is contained in [2], building on earlier work [1]. The same proof shows
that one may replace derivations of the coholomogy algebra by derivations of a
minimal model for C. With this formulation and under certain extra conditions
on k, the theorem above has a partial converse that is also stated in [2].
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Poincaré Duality and Models I

Christoph Winges

The observation that the Poincaré duality of a manifold is equivalent to the
non-singularity of the cup-product pairing allows one to express Poincaré duality
in completely cohomological terms, and is thus also reflected in the minimal model
of a given manifold. Therefore, we say that a cdga A over Q satisfies Poincaré
duality if there is a class [A] ∈ Hn(A) ∼= Q such that the following holds: If we
define α : Hn(A) → Q by requiring that α([A]) = 1, then the homomorphism
Hp(A)→ hom(Hn−p(A),Q), x 7→ [y 7→ α(xy)] is an isomorphism for all p.

It is then natural to ask the following: Given a minimal Sullivan algebra which
satisfies Poincaré duality, when is there a closed smooth manifold whose minimal
model is this algebra? In the simply connected case, this question was completely
answered by Sullivan. Additional notation is explained in the remark following
the theorem.

Theorem. [7, 13.2] Let A be a minimal Sullivan algebra satisfying Poincaré
duality with respect to some element in degree n. Suppose further that H1(A) = 0
and H∗(A) is of finite type. Fix p(A) = (pi(A))i ∈

⊕
i≥1H

4i(A).

(1) If n 6≡ 0 mod 4, then there is a closed oriented n-manifold M which
realizes (A, p(A)), i.e. A is the minimal model of M and the Pontryagin
classes of M correspond to the pi(A) under the induced isomorphism in
cohomology.

(2) If n ≡ 0 mod 4, there is a closed oriented n-manifold M which realizes
(A, p(A)) if and only if there is a class [A] ∈ Hn(A) such that:
• Case 1: If α(Ln

2
(p1, . . . , pn

4
)) = 0, then the obvious symmetric form

I : H2k(A)⊗H2k(A)→ Q is hyperbolic.
• Case 2: If α(Ln

2
(p1, . . . , pn

4
)) 6= 0, then this value agrees with the

signature of I, the form I is induced by a form over Z, and there is
a closed oriented n-manifold N such that for any partition J of n

4 ,
pJ(N) = pJ(A).

In the above theorem, Lk denotes the k-th Hirzebruch polynomial (see [4, §19]).
A partition of a natural number k is an unordered sequence of positive natural
numbers whose sum equals k. Associated to such a partition J = (j1, . . . , jr) is a
product of Pontryagin classes pJ := pj1 · . . . · pjr . If pJ lies in the top cohomology
of a closed oriented manifold N , the J-th Pontryagin number pJ(N) is given by
evaluating pJ on the fundamental class of N . The numbers pJ(A) can be defined
in a formally identical way (cf. [4, §16]).

The proof falls into three parts, where we concentrate on dimensions ≥ 5:
First, Sullivan’s spatial realization functor allows one to construct a rational space
X̄ := 〈A〉 whose rational (co)homology satisfies Poincaré duality (see [7, §8], or [3,
§17] for a more detailed and accessible treatment).
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Second, the “Pontryagin classes” pi(A) enable one to construct a Q-Poincaré
complex X together with a localization map X → X̄ and a normal map of non-
zero degree (f, f̄) : (M, ν) → (X, ξ), i.e. a non-zero degree map f : M → X with
an embedding i of M into some high-dimensional Euclidean space such that f is
covered by a bundle map f̄ from the normal bundle of M with respect to i to a
vector bundle ξ over X (cf. [6, 3.2]).

Finally, the proof is finished by invoking a theorem due to Barge:

Theorem. [1, Théorème 4] Let (f, f̄) : (Mn, ν) → (X, ξ) be a normal map of
non-zero degree with n ≥ 5.

If n 6≡ 0 mod 4, then (f, f̄) is normally cobordant to a rational homotopy
equivalence.

If n ≡ 0 mod 4, then (f, f̄) is normally cobordant to a rational homotopy equiv-
alence if and only if the restriction of the intersection form of M to kerHn

2
(f ;Q)

represents the zero element in the Witt group W (Q) ∼= L0(Q), the 0-th quadratic
L-group.

The proof of this theorem is via surgery theory, and works analogously to the
integral case as carried out by Browder in [2], only that the arguments simplify at
certain points. To give some examples:

• The odd-dimensional case is much easier since one has to deal with no
torsion phenomena.
• In the case n ≡ 2 mod 4, one encounters the same obstructions as in
the integral case, but surprisingly surgery can still be performed on some
generator of every summand since the Z2-valued obstruction vanishes after
multiplying an arbitrary generator by 2.
• The vanishing of the surgery kernel in the Witt group implies that this
form is hyperbolic by Witt’s cancellation theorem (as given for example
in [5, Ch. 1, Cor. 5.8]).
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Poincaré Duality and Models II

Yohan Brunebarbe

My talk was about the following question: does there exist a model for the ratio-
nal homotopy of a closed simply-connected manifold M which satisfies Poincaré
duality at the cochain level ?

Before getting into the precise definitions let us recall some basic results.
Let R be a commutative ring and M be a closed R-orientable (e.g. simply-

connected) manifold of dimension n. The cap product endows the singular ho-
mology H∗(M,R) with coefficients in R with a structure of graded, left H∗(M,R)-
module. An R-orientation defines a fundamental class [M ] ∈ Hn(M,R) and a
morphism of graded, left H∗(M,R)-modules H∗(M,R)→ s−nH∗(M,R) which as-
sociates [M ] to 1. Poincaré duality asserts that this is an isomorphism, or in other
words that s−n H∗(M,R) is a free graded, left H∗(M,R)-module. If R is a field,
the universal coefficient formula shows that H∗(M,R) is isomorphic to the dual of
H∗(M,R) as a graded, left H∗(M,R)-modules, so Poincaré duality in this context
becomes an isomorphism between H∗(M,R) and s−n H∗(M,R)∨.

This motivates the following definition.

Definition 2. Let k be a field. An oriented CDGA of dimension n (n ∈ N) is a
triple (A, d, ǫ), where (A, d) is a CDGA of finite type over k and ǫ ∈ (A∨)−n ≃
Hom(An, k) is a non-zero cocycle.

Remark 1. A non-zero cocycle corresponds to a morphism A→ s−nA∨ of A-dg-
modules.

Definition 3. An oriented CDGA (A, d, ǫ) satisfies Poincaré duality if the corre-
sponding morphism of A-dg-modules A→ s−nA∨ is an isomorphism.

If (A, d, ǫ) satisfies Poincaré duality one easily checks that:

- (H∗(A), 0, ǫ̃) satisfies Poincaré duality for the induced orientation ǫ̃ on
H∗(A),

- A is necessarly finite dimensional
- dim(Ak) = dim(An−k) for all k ∈ N.

Moreover, for (A, d, ǫ) to satisfy Poincaré duality it is enough for the morphism
A→ s−nA∨ to be injective.

Now we can state the main theorem :

Theorem 5 (Lambrechts-Stanley [2]). Let k be a field of any characteristic and
let (A, d) be a CDGA of finite type over k whose cohomology is simply-connected
and satisfies Poincaré duality for some orientation.

Then there exists an oriented CDGA (A′, d′, ǫ′) with (A′, d′) weakly equivalent
to (A, d) which satisfies Poincaré duality.

Remark 2. The theorem is trivial when the CDGA (A, d) is formal, for example
for CDGA-models of compact Kähler manifolds, topological groups and for any
simply-connected CDGA whose cohomology satisfies Poincaré duality in dimension
less than or equal to 6 [5].
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Proof. Let us give an idea of the proof. Let (A, d, ǫ) be an oriented CDGA and θ
be the kernel of the corresponding morphism A→ s−nA∨. It is a two-sided homo-
geneous differential ideal of A. Hence the quotient (A/θ, d̄, ǭ) inherits a canonical
structure of oriented CDGA and the projection is a morphism of CDGAs. More-
over (A/θ, d̄, ǭ) is easily seen to satisfy Poincaré duality. Thus we get a canonical
morphism from (A, d, ǫ) to an oriented CDGA which satisfies Poincaré duality, and
this morphism is a quasi-isomorphism if and only if the A-dg-module θ is acyclic
(i.e. H∗(θ) = 0).

The following observation is crucial: if we suppose moreover that (H∗(A), 0, ǫ̃)
satisfies Poincaré duality then an easy argument shows that θ is acyclic as soon as
H (θ) = 0 for 1 + n

2 ≤ i ≤ n+ 1.
To conclude the proof one tries to modify the CDGA (A, d, ǫ) step by step in

such a way that the corresponding ideal θ becomes more and more acyclic. Several
technical complications arise in the process. A key-observation is that modifying
the CDGA from the middle to the top is enough. �

Let us give an application of the theorem to models of configurations spaces. If
M is an n-dimensional manifold and k ∈ N∗, the space of ordered configurations
of k-points in M is the space

F (M,k) = {(x1, ..., xk) ∈Mk | xi 6= xj for i 6= j}.

The homeomorphism type of F (M,k) depends only on the homeomorphism type
ofM . On the other hand it is not true that the homotopy type of F (M,k) depends
only on the homotopy type of M ([4]). However it holds for closed 2-connected
manifolds when k = 2 ([3]). If we restrict our attention to rational homotopy
type, Lambrechts and Stanley ([1]) construct a CDGA-model of F (M, 2) from a
Poincaré model of M for M any closed 2-connected manifold: if A is a CDGA-
model of M with Poincaré duality then a CDGA-model of F (M, 2) is given by
A⊗A/(∆) where (∆) is the differential ideal in A⊗A generated by the so-called
diagonal class.

References

[1] Pascal Lambrechts and Don Stanley, The rational homotopy type of configuration spaces of
two points, Ann. Inst. Fourier(Grenoble) 54(4) (2004), 1029-1052.

[2] Pascal Lambrechts and Don Stanley, Poincaré duality and commutative differential
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Rational Homotopy Theory and String Topology

Ulrich Bunke

Let M be a closed oriented smooth manifold of dimension m and LM be its free
loop space. String topology as introduced by Chas and Sullivan in [1] is about

operations on the homology H∗(LM) and the equivariant homology HS1

∗ (LM).
The most basic operations are

(1) the string product Hs(LM)⊗Ht(LM)→ Hs+t−m(LM),
(2) the BV-operator ∆ : Hs(LM)→ Hs+1(LM), and

(3) the string bracket {· · · , · · · } : HS1

s (LM)⊗HS1

t (LM)→ HS1

s+t−m+2(LM).

Rational homotopy theory (see the reference book [2]) models the manifold
M by a commutative differential graded algebra MM such that H∗(MM ) =
H∗(M ;Q).

A Sullivan modelMM
∼= (ΛV, d) of M determines a Sullivan model

MLM = (Λ(V ⊕ V̄ ),D)
in a natural way. Here (V̄ )i = V i+1, and the differential D is given on generators
by Dv := dv, Dv̄ = −Sdv with the derivation S determined by Sv := v̄ and
Sv̄ := 0. Furthermore, a model for the homotopy quotient LM/hS

1 is given by

MLM/hS1 = (Λ(V ⊕ V̄ ⊕Q[u]),D) ,
|u| = 2, where now Dv := dv + uv̄, Dv̄ = −Sdv, and Du = 0. We have

(1) H∗(LM ;Q) ∼= H∗(MLM ),
(2) H∗

S1(LM ;Q) ∼= H∗(MLM/hS1)

It is now an interesting question to calculate the dual string topology operations

(1) Hs+t−m(LM)→ Hs(LM)⊗Ht(LM)
(2) Hs+1(LM)→ Hs(LM), and
(3) Hs+t−m+2

S1 (LM)→ Hs
S1(LM)⊗Ht

S1(LM)

directly from the model MM . As shown in [3] this can be done in an essentially
algorithmic way. The main purpose of my presentation was to explain the essential
steps of this algorithm. It eventually produces maps

(1) MLM →MLM ⊗MLM

(2) MLM →MLM , and
(3) MLM/hS1 →MLM/hS1 ⊗MLM/hS1

which induce the string dual operations on cohomology. The algorithm has been
demonstrated in the simplest possible example M = S2k+1.
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[3] Y. Félix, J-C. Thomas, and M .Vigué-Poirrier, Rational string topology, J. Eur. Math. Soc.,

9 (2007), 123–156.



Arbeitsgemeinschaft: Rational Homotopy Theory 1029

String Topology II

Gregory Lupton

LetM denote a 1-connected, closed, oriented smooth manifold and let LM denote
its free-loop space. String Topology incorporates the following algebraic structures
on H∗(M) := H∗+d(LM ;Q):

• loop product (making H∗(M) a graded commutative algebra);
• Gerstenhaber algebra;
• Batalin-Vilkovisky (B-V) algebra;
• string bracket.

Following the article of Chen [2], I will indicate how (some of) these various
algebraic structures of string topology may be constructed in a direct way starting
from the minimal model of the manifold M . In principle, this allows for direct
calculation of the various structures.

1. Frobenius Algebra

This is the fundamental structure from which other constructions flow. The
paper of Abrams [1] is a good source for this topic. Suppose that A is a finite-
dimensional graded algebra over Q, which is simply connected (Q in degree 0 and
0 in degree 1) and which satisfies Poincaré duality. For example, we may take

(1) A = H∗(M ;Q) forM a formal 1-connected, closed, oriented smooth man-
ifold;

(2) A = MM = (∧V, d) in the case in which V = V odd and V is finite-
dimensional.

In what follows, we may perform the various algebraic constructions starting from
any cohomology algebra H∗(M ;Q). However, if the resulting structures are to
correspond to those of M , we need to be able to take H∗(M ;Q) as a (rational)
model for M , which entails M formal. By Poincaré duality, we mean that there
is a symmetric, non-degenerate, bilinear pairing

〈 , 〉 : A⊗A→ Q

which satisfies < ab, c >=< a, bc >.
In case (1) above (for the rational cohomology of any M , formal or not), we

suppose that µ ∈ Hd(M ;Q) is a fundamental class and set x ∪ y =< x, y > µ for
x, y ∈ H∗(M ;Q), where ∪ denotes the cup product.

In case (2) above, ∧V is oddly generated, and so is an exterior algebra (but
with non-trivial differential, generally). The bilinear pairing is defined here in a
similar way to that of (1).

Warning: We regrade A negatively; an element of degree n now becomes an
element of degree (−n). If M is of dimension d, so that Hi(M ;Q) is non-zero
for i = 0, . . . , d, we re-grade so that now Hi(M ;Q) is non-zero for i = −d, . . . , 0.
After this re-grading, in case (2), the differential d is of degree (−1).



1030 Oberwolfach Report 18/2011

Now define A∗ := Hom(A,Q). Here, we mean graded linear maps A → Q,
where Q is concentrated in degree 0 and where A has been re-graded negatively.
Thus, A∗ will be non-zero only in non-negative degrees.

Both A and A∗ are A-bimodules: A with the obvious A-module structures from
its own algebra structure, and A∗ with the structures as follows:

(a · φ)(x) = (−1)|a||φ|φ(ax) and (φ · a)(x) = φ(ax),

for a, x ∈ A, and φ ∈ A∗.
We have:

Proposition 6. For A a finite-dimensional (DG) algebra, the following are equiv-
alent:

(a) A is a (DG) Poincaré duality algebra;
(b) There exists an isomorphism ι : A→ A∗ of (DG) A-bimodules.

Proof. See [1]. �

An algebra that satisfies these equivalent conditions is called a Frobenius algebra.
We choose and fix a basis {ei} of A with e0 of degree 0; take {ei} to be a dual

basis of A∗; and take {ei} a Poincaré dual basis of A. That is, we have ei(ej) = δij
and < ei, ej >= δij . Then the isomorphism of part (b) of the above may be defined
by ι(ei) = ei. Notice that this is a map of degree (+d).

Since A∗ is a (DG) coalgebra, the isomorphism ι : A→ A∗ may be used to place
a coalgebra structure on A, via (ι⊗ ι)−1 ◦m∗ ◦ ι:

A //

ι ∼=

��

A⊗A
∼= ι⊗ι

��

A∗
m∗

// A∗ ⊗A∗.

Here, m∗ : A∗ → A∗ ⊗A∗ is the dual of the multiplication m : A⊗A→ A of A.
In fact, we will place a slightly different structure on A. To motivate this choice,

we summarize briefly some of Chen’s basic formalism, and refer to the article [2] for
details. Let A(M) denote the DG algebra of Q-polynomial forms onM . This is the
same as the DG algebra of Sullivan PL-forms, except that cubical chains are used
in [2], in place of the usual simplicial forms. We regradeA(M) negatively, as above.
Then C(M) := Hom(A(M),Q) is the dual space of “currents” on M . Since A(M)
is not of finite type, this is not a coalgebra but is, rather, a “complete” coalgebra
(tensor product must be replaced with the complete tensor product). We supress
this, and some other technical difficulties, in this brief discussion. Now in place
of the above isomorphism, we have a quasi-isomorphism ι : A(M)→ C(M). This
cannot be inverted, but it turns out that m∗◦ι does factor through A(M)⊗C(M),
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as in the following diagram:

A(M)

''

ι ≃

��

A(M)⊗A(M)

≃ 1⊗ι

��

A(M)⊗ C(M)

≃ ι⊗1

��

C(M)
m∗

// C(M)⊗ C(M).

Based on this, for our algebra A, we define a “comultiplication” ∆: A→ A⊗A∗,
using ι as in the following diagram:

A
∆

$$
ι ∼=

��

A⊗A
∼= 1⊗ι

��

A⊗A∗

∼= ι⊗1

��

A∗
m∗

// A∗ ⊗A∗.

We note that this definition gives a degree 0 map ∆: A→ A⊗A∗. Furthermore,
we may write, in terms of the above bases,

∆(x) =
∑

i

xei ⊗ ei,

which really means m∗
(
ι(x)

)
=

∑
i ι(xei) ⊗ ei, and which (for future purposes)

may be written

∆(x) = xe0 ⊗ e0 +
∑

i≥1

xei ⊗ ei (†)

(recall that e0 is the basis element of degree 0—the unit in A).

2. Chain Model for the loop product

Now we will describe a DG (chain) algebra
(
A ⊗ Ω(A∗), D

)
, whose homology

gives H∗(M ;Q) as an algebra.
The construction involves the (reduced) cobar construction, which is as follows:
Suppose that (C,∆, d) is a DG coalgebra, supplemented and with counit (think

of C = A∗, in case (2) of the above). Let C denote the positive-degree part of
C (properly, the cokernel of the supplement, or the kernel of the counit), and let
s−1C denote the same, but shifted down in degree by 1. Set Ω(C) := T (s−1C), the
tensor algebra on s−1C. Define a degree (−1) differential dΩ on Ω(C) as follows:

dΩ(s
−1c) = −s−1(dc) +

∑
(−1)|c′|s−1c′ ⊗ s−1c”,

where, in C, we have ∆(c) = c⊗ 1+1⊗ c+∑
c′⊗ c”. Then extend to elements of

the form [c1| · · · |cn] (which is the standard way to denote the element c1⊗· · ·⊗ cn
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in this context) as a derivation. We abuse notation here by dropping the “s−1”
symbol.

Remark 3. The cobar construction is classical, and is useful for giving a chain
model for the homology of the based loop space. Indeed, if C is the singular chain
complex on M , structured as a coalgebra with the Alexander-Whitney diagonal,
then we have H(Ω(C), dΩ) ∼= H∗(ΩM) as algebras.

Now we describe Chen’s construction of a chain model for the loop product,
which includes a chain model for the (rational homology of the) free loop space on
M .

We form A⊗Ω(A∗), with differential of degree (−1) given as follows: For x ∈ A,
and [γ] ∈ Ω(A∗), we set

D(x ⊗ [γ]) = dx⊗ [γ] + (−1)|x|x⊗ dΩ[γ] +
∑

i≥1

xei ⊗ [ei, γ],

where the sum is over the same index as in (†) above, and the notation [ei, γ]

denotes Lie bracket in the tensor algebra, thus [ei, γ] = [ei|γ] − (−1)|ei||γ|[γ|ei].
We give A⊗ Ω(A∗) the obvious product, as follows. Define

◦ :
(
A⊗ Ω(A∗)

)
⊗
(
A⊗ Ω(A∗)

)
→ A⊗ Ω(A∗)

as (x⊗ [α]) ◦ (y ⊗ [β]) = (−1)|y||[α]|xy ⊗ [α|β]. Then we have the following:

Theorem 7 (Chen, Th.4.2).
(
A⊗Ω(A∗), D

)
is a DG graded (chain) algebra, and

the homology H∗

(
A ⊗ Ω(A∗), D

)
is isomorphic as a graded algebra with the loop

homology algebra H∗(M ;Q).

Remark 4. In particular, the homology H∗

(
A ⊗ Ω(A∗), D

)
, as a graded vector

space, is isomorphic with H∗+d(LM ;Q), i.e., with the ordinary (singular) rational
homology of the free-loop space shifted down in degree by d, the dimension of the
manifold M . At some level, this is a fairly plausible result, since Ω(A∗) models
H∗(ΩM ;Q), the homology of the based loop space; A models H∗(M ;Q); and

(
A⊗

Ω(A∗), D
)
is a twisting of these two models, which corresponds algebraically to a

“twisting cochain” model for the free-loop fibration ΩM → LM →M .

Most of the remainder of this report will consist of a detailed presentation of a
particular example, namely the case in whichM is a sphere. Further developments
show that H∗

(
A⊗Ω(A∗), D

)
(and hence the loop homology H∗(M ;Q)) is a graded

commutative algebra. This is a point we have assumed in the following example.
We also state the fact of commutativity below, towards the end of the report.

3. The Loop Product for M = Sd

TakeA = H∗(Sd;Q). Recall that we regrade the cohomology algebra negatively,
and so a vector space basis for A here is given by {e0, e1}, with |e0| = 0 and
|e1| = −d. Recall also that we reduce A∗ and then shift degrees down by 1, and so
the cobar construction Ω(A∗) here is the tensor algebra on the single generator e1

of degree (d− 1) (we have committed an abuse of notation by using the symbol e1
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to denote what should really be s−1e1, with e1, in the first place, the basis element
of A∗ dual to e1).

A typical element in A⊗Ω(A∗) is here of the form ei⊗ [e1| · · · |e1], with i = 0, 1,
and we see that A⊗ Ω(A∗) is generated as an algebra by the two elements e1 ⊗ 1
in degree (−d) and e0 ⊗ [e1] in degree (d − 1). Here we have written the unit in
T (e1) as 1; it is often written as “the empty bracket” [ ].

The identities (†) here reduce to the following:

∆(e0) = e0 ⊗ e0 + e1 ⊗ e1 and ∆(e1) = e1 ⊗ e0;
which then give, from the formula for D,

D(e1 ⊗ 1) = 0

and

D(e0 ⊗ [e1]) = (−1)−de1 ⊗ [e1, e1].

These formulas should be extended to A⊗ Ω(A∗) as derivations.
At this point, we must separate out the odd and even cases.

3.1. d = 2n+1; the odd-dimensional sphere. Here we have |[e1]| = 2n. In the
tensor algebra, then, we have [e1, e1] = [e1|e1] − (−1)2n·2n[e1|e1] = 0. Hence, the
differential D on A⊗Ω(A∗) is zero, and we have H∗

(
A⊗Ω(A∗), D

) ∼= A⊗Ω(A∗).

Re-writing e1 ⊗ 1 in degree −(2n + 1) as α, and e0 ⊗ [e1] in degree (2n) as β,
therefore, we may write

H∗

(
A⊗ Ω(A∗), D

) ∼= E(α) ⊗ T (β),
with E(−) denoting exterior algebra and T (−) denoting tensor algebra.

Remark 5. Notice that the ordinary (singular) rational cohomology of LS2n+1 is
given by ∧(a2n+1, b2n), where here ∧(−) denotes free graded commutative algebra
(exterior on odd-degree generators and polynomial on even-degree generators). One
way to see this is to observe that S2n+1 is rationally an H-space, and so we have
a decomposition LS2n+1 ≃Q S2n+1 × ΩS2n+1. It is clear that the loop product
and the ordinary cup product (even after shifting of degrees) are quite different
structures.

3.2. d = 2n; the even-dimensional sphere. Here we have |[e1]| = 2n−1, and so
[e1, e1] = [e1|e1]− (−1)(2n−1)(2n−1)[e1|e1] = 2[e1|e1]. Hence, the differential D on
A⊗Ω(A∗) is given on generators by D(e1⊗1) = 0 and D(e0⊗ [e1]) = e1⊗2[e1|e1].
Let us write x = e1 ⊗ 1 in degree (−2n) and y = e0 ⊗ [e1] in degree (2n − 1) for
the generators of A⊗ Ω(A∗). Then we have, for r ≥ 1,

D(y2r) = 0,

and for r ≥ 0,

D(y2r+1) = y2rD(y) = 2xy2r+2.

Also, for k ≥ 0, we have

D(xyk) = 0.
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It is now possible to describe the cohomology algebra H∗

(
A ⊗ Ω(A∗), D

)
in a

number of ways. One such is as follows. Write α = (x) in degree (−2n), β = (xy)
in degree (−1), and γ = (y2) in degree (4n − 2). Here (−) denotes “cohomology
class represented by” in H∗

(
A⊗ Ω(A∗), D

)
. Then we have, as algebras,

H∗

(
A⊗ Ω(A∗), D

) ∼= ∧(α, β, γ)
I

,

with ∧(−) denoting free graded commutative algebra and I the ideal generated by
{α2, αβ, αγ, β2}. Notice, in particular, that γ is a polynomial generator here.

Remark 6. The contrast between the loop product algebra and the ordinary (sin-
gular) cup product algebra on the rational cohomology of the free-loop space of M
is especially strong here. For M an even-dimensional sphere, cup products in the
rational cohomology algebra of LM are zero. By contrast, as we see above, the
loop homology algebra contains a polynomial generator.

4. Gerstenhaber (pre-) bracket; other structures

Chen’s article gives explicit formulae for the other structures listed at the start
of this report, which may be used to define those structures concretely in exam-
ples. This allows for in-principle direct computation with these structures, in the
rational setting. To illustrate, we mention briefly the development for the Ger-
stenhaber bracket, or loop bracket (not to be confused with the so-called string
bracket). First, a degree (+1) product, known as a pre-bracket, is defined, and
then using this pre-bracket, a second product, which is the actual bracket, is de-
fined as the commutator of the pre-bracket. This bracket (the commutator of the
pre-bracket) is denoted by “{, }”. It is defined on A ⊗ Ω(A∗), at the chain level,
is of degree (+1), and passes to homology. At this stage of the development, we
find the following result:

Theorem 8. H∗

(
A ⊗ Ω(A∗), D

)
is a graded commutative algebra, on which {, }

induces the structure of a degree (+1) Lie algebra. The loop product and this
bracket structure on H∗

(
A⊗Ω(A∗), D

)
together satisfy {u, v ◦w} = {u, v}◦w±v ◦

{u,w}, for appropriate sign, and thus form a “Gerstenhaber algebra” structure.

Skipping all details, we give the following explicit instance of a non-zero Gersten-
haber bracket. Return to the situation of the odd-dimensional sphere,M = S2n+1.
Recall from the above that we have elements e0 ⊗ [e1] in degree 2n and e1 ⊗ [e1]
in degree (−1) in H∗

(
A ⊗ Ω(A∗), D

) ∼= A ⊗ Ω(A∗). Using the formulae given in
Chen’s article, we find that

{e0 ⊗ [e1], e1 ⊗ [e1]} = −e0 ⊗ [e1].

This shows, for example, that in the case in which M = S2n+1, the Gerstenhaber
bracket is not only non-zero, but is non-nilpotent.

Chen’s article gives explicit formulae for the other stuctures listed at the start
of this report, which in principle may thus be investigated via direct computation.
The references in Chen’s article include a number of papers on rational homotopy
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and string topology, in which the ability to model explicitly the various algebraic
structures of string topology has already been established. It seems clear that
explicit computations in this area rapidly become bogged down in technical details.
Nonetheless, the ability to model these structures rationally holds great promise
for better understanding of their general properties.
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Chen’s Iterated Integrals and Higher Hochschild Chain Complex

Arturo Prat-Waldron

Given a 1-form on a smooth manifold M one obtains, via integration, smooth
functions on the free loop space LM = Maps(S1,M) and on the path space PM =
Maps(I,M). During the 70’s, Kuo Tsai Chen in a series of papers (c.f. [1, 2])
generalized this simple observation and developed a beautiful and powerful method
of iterated integration for constructing more general differentials forms on mapping
spaces like LM and PM in terms of differentials forms on the original manifold M .
For instance, given an integer k ≥ 0, consider the diagram

(0.1) LM×∆k
evk

//

π

��

Mk+1

LM

where evk is the evaluation map given by

evk(γ, (t1, . . . , tk)) = (γ(0), γ(t1), . . . , γ(tk))

for γ ∈ LM and (t1, . . . , tk) ∈ ∆k = {(t1, . . . , tk) ∈ Rk|0 ≤ t1 ≤ · · · ≤ tk ≤ 1}
and π is the projection on the first factor. Given forms ω0 . . . , ωk ∈ Ω∗(M), their
iterated integral is defined to be the differential form

I(ω0, . . . , ωk) :=

∫
ω0 . . . ωk := π∗ ◦ ev∗k(ω0 ⊗ · · · ⊗ ωk) ∈ Ω∗(LM)

of degree −k +
∑k

i=0 degωi, where π∗ is integration over the simplex ∆k.
Chen studied some of the remarkable algebraic properties of this procedure and

observed that it defines a map of cdga’s I∗ : CH∗(Ω
∗(M),Ω∗(M))→ Ω∗(LM), be-

tween the Hochschild chain complex of Ω∗(M) with coefficients on itself, endowed
with the usual shuffle product, and the de Rham complex of the free loop space
with wedge product of forms. Moreover, he showed that if M is simply-connected
this map is a quasi-isomorphism.

In order to talk about objects like differential forms and the de Rham complex
on mapping spaces like LM and PM, Chen developed a theory of differentiable
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spaces, nowadays also known as diffeological spaces. These are sets X endowed
with a collection of plots, i.e. maps from open subsets of Euclidean space U → X
which are considered to be smooth, satisfying certain compatibility and gluing
conditions. Differential forms on X and all their operations are then defined
plotwise. He also developed a method of formal power series connections which
allowed him to prove a de Rham type-theorem for the cohomology of loop spaces
and to use iterated integrals to study loop space homology. The method of formal
power series connections provides as well a strong link between Chen’s theory and
rational homotopy theory. In particular, Chen proved the following

Theorem 9. Let M be a simply-connected closed oriented smooth manifold of
dimension n. The iterated integral map and its dual induce isomorphism

H∗(LM) ∼= HH∗(Ω
∗(M),Ω∗(M)) and H∗+n(LM) ∼= HH∗(Ω∗(M),Ω∗(M))

of graded vector spaces.

Using simplicial methods, Jones [5] showed that, in the simply-connected case,
the isomorphisms of Theorem 9 hold over Z after replacing Ω∗(M) by C∗(M), the
complex of integral singular cochains on M .

In previous lectures we saw that the shifted homology of the free loop space,
H∗(LM) := H∗+n(LM), endowed with the Chas-Sullivan product and bracket car-
ries the structure of a BV algebra. On the other hand, the Hochschild coho-
mology HH∗(A,A) of any cdga A, carries the structure of a Gerstenhaber al-
gebra and Tradler and Zeinalian [8] constructed a compatible BV -operator on
HH∗(C∗(M), C∗(M)) when M is closed, oriented. Félix and Thomas [3], using ra-
tional homotopy methods, proved that there exists an isomorphism of BV -algebras
between H∗(LM) and HH∗(C∗(M), C∗(M)) in the case of characteristic 0 coeffi-
cients and Merkulov [6] showed that a dual of the Chen’s iterated integral map
induces a morphism of Gerstenhaber algebras over R, giving a nice geometric
interpretation to the product and bracket.

The purpose of this talk is to present a generalization of some of these methods
and results to more general mapping spaces, as appears in Section 2 of [4]. Here the
authors consider an arbitrary pointed simplicial set Y• : ∆op → Set∗ and following
Pirashvili [7] they define the higher Hochschild chain complex CHY•

∗ (A,N) of a
cdga A with coefficients on a symmetric A-bimodule N with respect to Y• to be
the chain complex associated to the simplicial chain complex L(A,N)◦Y• : ∆op →
Chain where L(A,N) : Set∗ → Chain is the functor considered by Pirashvili from
the category of pointed sets to chain complexes given as follows: For a finite
pointed set S = (s0, . . . , sk) with basepoint s0, L(A,N)(S) := N ⊗A⊗k and for a
map f : S → R = (r0, . . . , rl) between finite pointed sets

L(A,N)(f)(n⊗ a1 ⊗ · · · ⊗ ak) = (−1)ǫñ⊗ b1 ⊗ · · · ⊗ bl
where bj =

∏
i∈f−1(j) ai for j = 1, . . . , l, ñ = n ⊗ ∏

i∈f−1({r0}),i6=s0
ai, and the

sign ǫ is determined by the usual Koszul rule, which makes everything well defined
and independent of choices of ordering on the sets. The functor is then extended
to arbitrary sets by (co)limits. By taking Y• = S1

• to be the standard simplicial
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representation for the circle, with only one non-degenerate 0 and 1-simplices one
recovers the usual Hochschild chain complex. Moreover, one can define a shuffle
product shY• on CHY•

∗ (A,A), which generalizes the usual one when Y• = S1
• and

turns CHY•

∗ (A,A) into a cdga.
On the other hand the authors consider the mapping space Maps(Y•,M) of

maps |Y•| → M from the geometric realization of Y• to M which are continuous
and smooth in the interior of each non-degenerate simplex. They endow this
space with a natural structure of diffeological space and generalize equation (0.1)

to define a (higher) Chen’s iterated integral map IY•
∗ : CHY•

∗ (Ω∗(M),Ω∗(M)) →
Ω∗(Maps(Y•,M)). They prove the following generalization of Chen’s result:

Theorem 10. The iterated integral map

IY•
∗ : (CHY•

∗ (Ω∗(M),Ω∗(M)), shY•)→ (Ω∗(Maps(Y•,M)),∧)
is a morphism of cdga’s.

Moreover, if dim(Y•) = k (i.e., k is the largest dimension of any non-degenerate
simplex) and M is k-connected, then the map IY•

∗ is a quasi-isomorphism.
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product, Ann. Sci. Éc. Norm. Supér. (4) 43 (2010) no. 5, 811–881.
[5] J.D.S. Jones, Cyclic homology and equivariant homology, Invent. Math. 87 (1987) no. 2,

403–423.
[6] S.A. Merkulov, De Rham model for string topology, Int. Math. Res. Not. (2004) no. 55,

2955–2981.
[7] T. Pirashvili, Hodge decomposition for higher order Hochschild homology, Ann. Sci. Éc.
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Differential Modules and Applications

Yves Félix

In this talk we give the basic definitions and properties of differential modules
with some applications.

Let (A, d) be a differential graded algebra defined over a field lk. A differential
graded module (M,d) over (A, d) is called semifree (or cofibrant) if M is free as
an A-module, M = A⊗ V , and if V is equipped with a filtration V = ∪n≥0V (n),
with V (0) ⊂ V (1) ⊂ · · · ⊂ V (n) such that d(V (n)) ⊂ A⊗ V (n− 1).

Semifree modules are important objects. First, for every differential graded
module (M,d) there exists a semifree module (S, d) equipped with a quasi-isomor-
phism ϕ : (S, d) → (M,d). The module (S, d) is then called a semifree model of
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M . For instance if d = 0 on A and M , then a free resolution of M is a semifree
resolution of (M,d). Now let S be a semifree model of M , then for any module
N we define ExtnA(M,N) = Hn(HomA(S,N)) and TornA(M,N) = Hn(S ⊗A N).
(In this talk I will not take attention to left and right modules. The good choice
is given by the formulas).

If F → E → B is a fibration with B simply connected with finite Betti numbers,
then C∗(E) is a C∗(B)-module and H∗(F ) ∼= TorC∗(B)(C

∗(E), lk); On the other
hand by the lifting of homotopies, C∗(F ) is a C∗(ΩB)-module, and H∗(E) ∼=
TorC∗(ΩB)(C∗(F ), lk).

When B is simply connected with finite Betti numbers, C∗(E) admits a semifree
model of the form (C∗(B)⊗H∗(F ), D). Here C∗(B) can be replace by any quasi-
isomorphic cdga. In particular over Q, we can replace C∗(B) by the minimal
model of B.

Consider for instance the situation of a torus T r acting almost freely on a
finite CW complex X . Then the cohomology of the space ET r ×T r X is finite
dimensional. The minimal model of BT r is (∧(x1, · · · , xr), 0) with |xi| = 2 and
ET r ×T r X admits a semifree model of the form (∧(x1, · · · , xr) ⊗ H∗(F ), D).
Recall here the TRC conjecture: When the action of T r is almost free, then
dimH∗(X) ≥ 2r. This conjecture is in fact equivalent to a conjecture on semifree
modules : Suppose (M,d) = (∧(x1, · · · , xr) ⊗ V,D) is a semifree module and
dimH∗(M,D) <∞, then dimV ≥ 2r.

Semifree modules appear as an important tool in duality theory: A connected
finite type dga (A, d) has a cohomology satisfying Poincaé duality of dimension
m if and only if H∗(A) is finite dimensional and ExtA(lk, A) ∼= ExtmA (lk, A) has
dimension 1. It follows that taking cohomology induces for every A-module N an
isomorphism

ExtrA(M,A) ∼= Hom(Mm−r, Am) .

In particular for every submanifold f : N →֒ M of dimension n, C∗(N) is a
C∗(M)-module, and the linear map Hn(N) → Hm(M) that maps fundamental
class to fundamental class corresponds to a well defined element

f ! ∈ Extm−n
C∗(M)(C

∗(N), C∗(M)) .

This can be taken as definition for the shriek map as the cochain level. More
generally, suppose E →M is a fibration and E′ → B the induced fibration along f .
Let take a semifree model S = (C∗(M)⊗V,D) for C∗(N), then C∗(E)⊗C∗(M)S =
C ∗ (E)⊗C∗(M) (C

∗(M)⊗V ) is a semifree model for C∗(E′) as C∗(E)-module and
the isomorphism ExtC∗(M)(S,C

∗(M)) ≃ ExtC∗(E)(C
∗(E)⊗C∗(M) S,C

∗(E)) gives

a uniquely defined shriek map in Extm−n(C∗(E′), C∗(E)).
Examples of semifree models are given by Bar constructions : Let M be an

A-module, then the double Bar construction B(A;A;M) = A ⊗ T (sĀ) ⊗M is a
semifree model for M .

The free loop space LM = Map(S1,M) is at the center of relations between
topology and geometry. If A is a rational model for M (1-connected with finite
type Betti numbers), then the dual ΩA of the Bar construction on A is an algebra



Arbeitsgemeinschaft: Rational Homotopy Theory 1039

model for C∗(ΩM). A semifree model for C∗(LM) as C∗(M)-module is given by
the Hochschild complex A⊗B(A), that is, since A is commutative, a semifree A-
module. On this model you can easily read the dual of the string product: Suppose
A is a Poincaré duality model, i.e., a model that satisfies Poincaré duality at the
cochain level and let ∆ ∈ A⊗ A be the diagonal class. The multiplication by ∆,
q : A→ A⊗A is a morphism of A⊗A-module and a representant of the shriek map
of degree m corresponding to the injection of the diagonal into M ×M . Denote
now by ∇ : BA→ BA⊗ BA the usual coproduct on the Bar construction. Then
1 ⊗ ∇ : A ⊗ B(A) → A ⊗ B(A) ⊗ B(A) is a morphism of A-modules, and the
composition

(q ⊗ 1) ◦ (1⊗∇) : A⊗BA→ (A⊗BA)⊗2

a model for the loop product.
Using Tor and Ext, we also have H∗(LM) = TorΩA(ΩA,Q) where ΩA acts on

itself by conjugation, and H∗(LM) = TorA⊗A(A,A).
There exists an important relation between semifree resolutions of a module

M over a dga A, and resolutions of H(M) as module over H(A). In fact if
(A ⊗ V,D) is a semifree resolution of lk with dimV < ∞, then for some p we
have ExtpH(A)(lk,H(A)) 6= 0. Applying this to the path space fibration PX →
X , with X a finite simply connected CW complex, we deduce that for some p,
ExtpH∗(ΩX)(lk,H∗(ΩX)) 6= 0 . This has been a great ingredient for the study of the

structure of the algebra H∗(ΩX ; lk).
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Problems on Curvature and RHT

John Oprea, Victor Turchin

The book [3] gives an idea of how rational homotopy theory is a useful tool
when studying curvature constraints on Riemannian manifolds. But there are
other results that beg the question whether other rational connections exist.

First, recall the famous result of Bochner (see [7]) that a closed manifold M
with non-negative Ricci curvature obeys

b1(M) ≤ dim(M),

where b1(M) denotes the first Betti number of M (with equality implying M is
a flat torus). This result was refined in [5] by replacing dim(M) with cat(M),
the Lusternik-Schnirelmann category of M ([2]). The important point in making
the refinement was the use of elementary properties of Lusternik-Schnirelmann



1040 Oberwolfach Report 18/2011

category in conjunction with the Cheeger-Gromoll Splitting Theorem: A closed
manifold with non-negative Ricci curvature (and infinite fundamental group) has

a finite cover M̃ →M with M̃ diffeomorphic to a product T k ×N with N simply
connected. In fact, this type of splitting also holds for almost non-negative Ricci
curvature ([1]), so the LS category bound holds for these manifolds as well. A

crucial point is that b1(M) ≤ k ≤ cup(M̃), where cup(M), denotes the cuplength
of M , the length of the longest non-trival product in rational cohomology. This
elicits:

Problem. Are there other curvature conditions on closed manifolds that give
product splittings up to a finite cover with the cuplength condition stated above?

The second question arises from a fundamental problem with using rational
homotopy theory in geometry. Namely, the algebra of rational homotopy theory
works best for nilpotent spaces (i.e. spaces with nilpotent fundamental groups
that act nilpotently on higher homotopy groups), but nilpotency does not seem to
be a prevailing condition in the non-simply-connected geometric world. Recently,
however, it has been shown in [4] that the condition of almost non-negative sec-
tional curvature onM implies that, up to a finite cover,M is nilpotent. Therefore,
the methods of rational homotopy theory may be useful in studying these spaces.
Furthermore, as a generalization of the Bochner result mentioned above, it was
shown in [6] that almost non-negative curvature implies that a finite cover ofM is
the total space of a fibration over a torus of dimension b1(M). In [4] it was shown
that a finite cover of M (which is nilpotent) is the total space of a fibre bundle
over a nilmanifold with fibre simply connected. This all leads to the following.

Problem. Use rational homotopy theory to study almost non-negatively section-
ally curved manifolds.

Problem. There are two topological obstructions for a closed symplectic manifold
not to be Kählerian: Hard Lefschetz property and formality. Moreover it is known
that neither property implies the other. Are there other topological obstructions?
Or may be Hard Lefschetz together with formality implies that a closed symplectic
manifold is weakly (or rationally) equivalent or homeomorphic to a Kählerian one?
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