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Je collabore avec S. Halperin depuis plus de 30 ans.
Le séjour de S. Halperin à Angers se déroulera en même temps que celui de Y. Félix (Professeur

UCL-Belgique). Ce dernier bénéficie d’un support de Professeur invité à l’Université d’Angers
pendant la même période. Nous envisageons poursuivre les travaux entrepris depuis ces quatre
dernières années et qui se situent dans la suite des papiers suivants:

[Ref1] Exponential growth and an asymptotic formula for the ranks of homotopy groups of
a finite 1-connected complex (en collaboration avec Y. Félix et S. Halperin) Annals of Mathe-
matics 171 (2009) .

[Ref2] The structure of the homotopy Lie algebra (en collaboration avec Y. Félix et S.
Halperin) Commentarii Mathematici Helvetici (à parâıtre 2010).

[Ref3] The ranks of homotopy groups of a space of finite complex. (en collaboration avec Y.
Félix et S. Halperin) Journal of the Amer. Math Soc. (soumis).

Le thème scientifique de ces recherches en cours est le suivant:

Recall that any finitely generated abelian group, G, has the form G ∼= Zk ⊕ T where T is a
finite group; k is called the rank of G, rk G. Evidently rk G = dim G⊗Z Q and so the definition
may be extended to all abelian groups :

Definition : The rank of an arbitrary abelian group, G, is defined by rk G = dim G⊗Z Q.

In particular, since for any pointed topological space X the groups πi(X), i ≥ 2, are abelian,
the sequences (rk πi(X))i≥2 are well defined.

It is a classical result that if (ki)i≥2 is an arbitrary sequence with each ki a non-negative
integer or ∞ then there is a simply connected CW complex Y with rk πi(Y ) = ki, i ≥ 2. Thus
in this paper we shall be concerned with the following

Question : What are the restrictions on the sequences (rk πi(X))i≥2 imposed by the condition
that X be a finite dimensional connected CW complex ?

First note that the class of all pointed topological spaces, X, may be divided into the three



distinct groups characterized by the following conditions :

(i)
∑

i≥2 rk πi(X) < ∞.

(ii) For i ≥ 2 each rk πi(X) < ∞, but
∑

i≥2 rk πi(X) = ∞.

(iii) For some i ≥ 2, rk πi(X) = ∞.

Definition. A pointed topological space, X, is called rationally elliptic (resp. rationally
hyperbolic, π-rank infinite) if X belongs to group (i) (resp. group (ii), group (iii)) above.

Now for any connected CW complex, X, a classical spectral sequence argument applied to
Postnikov decompositions for the universal cover, X̃, establishes the following equivalences :

(1) rk πi(X) < ∞ for 2 ≤ i ≤ k ⇐⇒ dim H≤k(X̃; Q) < ∞ .

It follows that X is rationally elliptic (resp. rationally hyperbolic) if and only if X̃ is rationally
elliptic (resp. rationally hyperbolic) in the sense of [Ref1].

Now consider the question above. In the elliptic case it is completely resolved by Friedlander
and Halperin in 1979, where the authors establish a simple algorithm that decides whether
any finite sequence k1, . . . , kr of non-negative integers appears as the sequence (rk πi(X))i≥2 for
a rationally elliptic finite dimensional CW complex. For the rationally hyperbolic and π-rank
infinite cases, however, such a characterization seems out of reach, especially given the fact that
when n is odd the space Sn ∨ Sn and Sn ∨ S1 satisfy rk πi(X) = 0 unless i ≡ 1(mod(n − 1)) .
Thus instead we consider the sequence

µk(X) = max
k+2≤i≤k+n

rk πi(X) .

Our principal result deals with the hyperbolic case, and we need first to recall the

Definition. The homotopy log index, αX , of a pointed topological space X is given by αX =
lim supk

log rk πk(X)
k

.

This invariant, which provides one measure of the growth of the sequence rk πk(X) was intro-
duced in a very different context by Gelfand and Kirillov.

Now if X is a rationally hyperbolic connected n-dimensional CW complex we have (1) that
dim H(X̃; Q) < ∞ and so we may set h = maxi dim Hi(X̃; Q). To state our main theorem we
introduce the notation :

β(n, h) = 40 (2n log n + log(h + 1) + 1) log nh

and
γ(n, h) = (n + 1) log(h + 1) + 2n log 2n .

Then our first main theorem reads :

Theorem A. [Ref3] Suppose X is an n-dimensional connected rationally hyperbolic CW com-
plex. Then 0 < αX < ∞, and for some K, and for every k ≥ K,

e(αX−β(n,h)
log k )k ≤ max

k+2≤i≤k+n
rk πi(X) ≤ e(αX+

γ(n,h)
k )k .
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This leaves the π-rank infinite case, and here we have a complete answer :

Theorem B. [Ref3] Suppose X is an n-dimensional connected CW complex. If X is π-rank
infinite then for all k ≥ 0,

max
k+2≤i≤k+n

rk πi(X) = ∞ .

Remark. The principal result of [R1] is equivalent to the assertion that (for X as in Theorem
A) if k is sufficiently large then maxk+2≤i≤k+n rk πi(X) = e(αX+εk)k with εk → 0 as k →∞. Now
in Theorem A we give precise estimates for εk depending only on n, h and k. Not surprisingly,
while the result of [R1] generalizes to spaces of finite Lusternik-Schnirelmann category, Theorem
A does not, as we shall see in Theorem D, below.

When combined with previously established results Theorems A and B have the following
immediate corollaries :

Corollary 1. Let X be an n-dimensional connected CW complex. Then,

(i) X is rationally elliptic ⇐⇒ rk πi(X) = 0 , i ≥ 2n.

(ii) X is rationally hyperbolic ⇐⇒ 1 ≤ max
k+2≤i≤k+n

rk πi(X) < ∞ for all k ≥ 0.

(iii) X is π-rank infinite ⇐⇒ max
k+2≤i≤k+n

rk πi(X) = ∞ for all k ≥ 0.

Corollary 2. Let X be an n-dimensional connected CW complex. Then

(i) X is rationally elliptic ⇐⇒ αX = −∞

(ii) X is rationally hyperbolic ⇐⇒ 0 < αX < ∞

(iii) X is π-rank infinite ⇐⇒ αX = ∞.

Corollary 3. Let X be an n-dimensional connected CW complex. Then X is rationally
elliptic (resp. rationally hyperbolic, π-rank infinite) if and only if max

2n≤i≤3n−2
rk πi(X) = 0 (resp.

∈ (0,∞), resp. = ∞).

The asymptotic formula of Theorem A provides a good estimate of the homotopy log index
αX in terms of max

k+2≤i≤k+n
rk πi(X), provided k ≥ K for sufficiently large K. Unfortunately we

are not able to give any estimate for K and, indeed, nothing we know gives any suggestion that
this might be possible.

By contrast it is possible to directly estimate αX from the integers rk πi(X), i ≤ r dim X,
or equivalently from the integers rk Hi(ΩX), i ≤ r dim X, with an error bound depending
explicitly in r. This, our third main result, reads.

Theorem C. [Ref3] Let X be a rationally hyperbolic n-dimensional CW complex and set
h = maxi dim H i(X̃; Q). Then for log r > 2nn2n+5 log nh,

max
r<i≤nr

rk πi(X)

i
− n log 2n

r
≤ αX ≤ max

r<i≤2r

rk πi(X)

i
+

β(n, h)

10 log r
.
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The main part of Theorem A asserts that for the ’universal sequence’ δk = 1/k, given any
n-dimensional rationally hyperbolic CW complex X there is a constant c = c(n, h) such that

for k sufficiently large maxk+2≤i≤k+n
log rk πi(X)

k
≥ αX − cδk. This is the assertion that does not

generalize to rationally hyperbolic spaces of finite Lusternik Schnirelmann category. Our final
main theorem reads:

Theorem D. [Ref3] Let δk → 0 be any sequence of non-negative numbers and let α ∈ (0,∞)
be any number. Then there is a simply connected rationally hyperbolic wedge of spheres X
such that αX = α, and for any c > 0 and any integer d > 0 there are infinitely many k for
which

max
k≤i≤k+d

log rk πi(X)

k
< αX − cδk .

The proof of Theorems A,B,C and D proceeds by a careful analysis of the homotopy Lie
algebra LX = π∗(ΩX)⊗Q with Lie bracket given by the Samelson product.

We work over a ground field lk of characteristic 6= 2. A graded Lie algebra, L, is a graded
vector space equipped with a Lie bracket [ , ] : L⊗ L → L, satisfying

[x, y] + (−1)deg x·deg y[y, x] = 0 and [x, [y, z]] = [[x, y], z] + (−1)deg x·deg y[y, [x, z]] ,

and [x, [x, x]] = 0, x ∈ Lodd if char Ik = 3 (This condition is automatic if char Ik is not 3.)
As in the classical case, L has a universal enveloping algebra UL, and we define

depth L = least m (or ∞) such that Extm
UL(lk, UL) 6= 0 .

Similarly, if M is an L-module, then

gradeLM = least q (or ∞) such that Extq
UL(M, UL) 6= 0 .

The graded Lie algebra, L, is connected if L = {Li}i≥0 and of finite type if each dim Li < ∞;
graded Lie algebras satisfying both condition are called cft graded Lie algebras.

Suppose now X is a simply connected CW complex of finite type. Then the rational homotopy
Lie algebra, LX = π∗(ΩX) ⊗ Q (with Lie bracket given by the Samelson product) is a cft
graded Lie algebra. The motivation for the study of cft graded Lie algebras of finite depth is
the following result;

Theorem. If X is a simply connected CW complex of finite type, then

depth LX ≤ cat0X

where cat0X denotes the rational Lusternik-Schnirelmann category of X. In particular, if X is
a finite CW complex, then depth LX is finite.

An important question connected with the Lie algebra LX is the behavior of the integers
dim (LX)i, since

dim(LX)i = rank πi+1(X) ,
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as explained above. We also focus on the structure of cft graded Lie algebras of finite depth,
with particular attention to the interplay between depth and growth of the integers dim Li,
and to the structure of the ideals in L. Our aim is a classification theory for the ideals in a
cft graded Lie algebra of finite depth, and in particular for the homotopy Lie algebras LX of a
space of finite Lusternik-Schnirelmann category. A crucial notion is that of full subspace.

Definition : A subspace W of a graded vector space V = {Vi}i≥0 is full in V if for some fixed
λ, q and N (all positive)

dim Vk ≤ λ
k+q∑
i=k

dim Wi , k ≥ N .

An easy argument then shows that an equivalence relation on the subspaces of V is defined
by

U ∼ W ⇔ U and W are full in U + W .

Two subspaces V, W in a graded Lie algebra L are called L-equivalent (V ∼L W ) if for all
ideals K ⊂ L, V ∩K ∼ W ∩K. As we show in section 5, the set L of L-equivalence classes
[I] of ideals I ⊂ L is a distributive lattice under the operations [I] ≤ [J ] if I ∩ J ∼L I,
[I] ∨ [J ] = [I + J ] and [I] ∧ [J ] = [I ∩ J ]. In such a lattice each maximal chain of strict
inequalities 0 < [I(1)] < · · · < [I(r)] = [I] has the same length r; the number r is the height of
[I], ht[I].

Now our main result in [Ref2] reads

Theorem. Let L be a cft graded Lie algebra of finite depth m and suppose ht[L] = r. Then
r ≤ m. Moreover, the number νL of L-equivalence classes of ideals in L satisfies νL ≤ 2r and
equality holds if and only if L ∼L I(1)⊕ · · · ⊕ I(r) where the I(i) are ideals of height 1.

Un CV et une liste de publications de S. Halperin sont joints.

Jean-Claude THOMAS
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