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Je collabore avec S. Halperin depuis plus de 30 ans.

Le séjour de S. Halperin a Angers se déroulera en méme temps que celui de Y. Félix (Professeur
UCL-Belgique). Ce dernier bénéficie d'un support de Professeur invité a I’'Université d’Angers
pendant la méme période. Nous envisageons poursuivre les travaux entrepris depuis ces quatre
dernieres années et qui se situent dans la suite des papiers suivants:

[Refl] Exponential growth and an asymptotic formula for the ranks of homotopy groups of
a finite 1-connected complex (en collaboration avec Y. Félix et S. Halperin) Annals of Mathe-
matics 171 (2009) .

[Ref2] The structure of the homotopy Lie algebra (en collaboration avec Y. Félix et S.
Halperin) Commentarii Mathematici Helvetici (a paraitre 2010).

[Ref3] The ranks of homotopy groups of a space of finite complex. (en collaboration avec Y.
Félix et S. Halperin) Journal of the Amer. Math Soc. (soumis).

Le théme scientifique de ces recherches en cours est le suivant:

Recall that any finitely generated abelian group, G, has the form G = ZF @ T where T is a
finite group; k is called the rank of G, rk G. Evidently rk G = dim G ®7 Q and so the definition
may be extended to all abelian groups :

Definition : The rank of an arbitrary abelian group, G, is defined by rk G = dim G ®z Q.

In particular, since for any pointed topological space X the groups m;(X), i > 2, are abelian,
the sequences (rkm;(X));>2 are well defined.

It is a classical result that if (k;);>2 is an arbitrary sequence with each k; a non-negative
integer or oo then there is a simply connected CW complex Y with rkm;(Y) = k;, ¢ > 2. Thus
in this paper we shall be concerned with the following

Question : What are the restrictions on the sequences (rk m;(X));>2 imposed by the condition
that X be a finite dimensional connected CW complex ?

First note that the class of all pointed topological spaces, X, may be divided into the three



distinct groups characterized by the following conditions :
(1) Yo tkm(X) < oo.
(i) For ¢ > 2 each rkm;(X) < oo, but 35y rkm(X) = o0.

(ili) For some i > 2, rkm;(X) = oc.

Definition. A pointed topological space, X, is called rationally elliptic (resp. rationally
hyperbolic, w-rank infinite) if X belongs to group (i) (resp. group (ii), group (iii)) above.

Now for any connected CW complex, X, a classical spectral sequence argument applied to
Postnikov decompositions for the universal cover, X, establishes the following equivalences :

(1) rkm(X) <oo for2<i<k <= dimH(X;Q)< .

It follows that X is rationally elliptic (resp. rationally hyperbolic) if and only if X is rationally
elliptic (resp. rationally hyperbolic) in the sense of [Refl].

Now consider the question above. In the elliptic case it is completely resolved by Friedlander
and Halperin in 1979, where the authors establish a simple algorithm that decides whether
any finite sequence ki, . .., k, of non-negative integers appears as the sequence (rk m;(X));>2 for
a rationally elliptic finite dimensional CW complex. For the rationally hyperbolic and m-rank
infinite cases, however, such a characterization seems out of reach, especially given the fact that
when n is odd the space S™ vV S™ and S™ V St satisfy rkm;(X) = 0 unless ¢ = 1(mod(n — 1)).
Thus instead we consider the sequence

(X)) = k4225 Shn rlemi(X)

Our principal result deals with the hyperbolic case, and we need first to recall the

Definition. The homotopy log index, ax, of a pointed topological space X is given by ay =
lim sup, W :

This invariant, which provides one measure of the growth of the sequence rk m(X) was intro-
duced in a very different context by Gelfand and Kirillov.

Now if X is a rationally hyperbolic connected n-dimensional CW complex we have (1) that
dim H(X; Q) < oo and so we may set h = max; dim H;(X;Q). To state our main theorem we
introduce the notation :

B(n,h) =40 (2nlogn + log(h + 1) + 1) lognh
and
v(n,h) = (n+1)log(h+ 1)+ 2nlog2n.
Then our first main theorem reads :

Theorem A. [Ref3] Suppose X is an n-dimensional connected rationally hyperbolic CW com-
plex. Then 0 < ax < oo, and for some K, and for every k > K,
B(n,h)

e(ax_ Tog k )k < max I'k’]‘(',L(X) < e(aXJ"W)k_
k+2<i<k+n
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This leaves the 7-rank infinite case, and here we have a complete answer :

Theorem B. [Ref3] Suppose X is an n-dimensional connected CW complex. If X is w-rank
infinite then for all k > 0,

max rkm(X)=00.
k+2<i<k+n

Remark. The principal result of [R1] is equivalent to the assertion that (for X as in Theorem
A) if k is sufficiently large then maxy o<icpin 1k 7(X) = el@x+0)k with ¢, — 0 as k — oo. Now
in Theorem A we give precise estimates for €, depending only on n, h and k. Not surprisingly,
while the result of [R1] generalizes to spaces of finite Lusternik-Schnirelmann category, Theorem
A does not, as we shall see in Theorem D, below.

When combined with previously established results Theorems A and B have the following
immediate corollaries :

Corollary 1. Let X be an n-dimensional connected CW complex. Then,
(i) X is rationally elliptic <= rkm;(X) =0, i > 2n.

. : : . < . S
(ii) X is rationally hyperbolic <= 1 < pyiRRx rkm;(X) < oo for all k > 0.

(iii) X is w-rank infinite <= max rkm;(X) = oo for all k > 0.
k4+2<i<k+n

Corollary 2. Let X be an n-dimensional connected CW complex. Then
(i) X is rationally elliptic <= ax = —00
(ii) X is rationally hyperbolic <= 0 < ax < o0

(iii) X is w-rank infinite <= ax = o0.

Corollary 3. Let X be an n-dimensional connected CW complex. Then X is rationally

elliptic (resp. rationally hyperbolic, m-rank infinite) if and only if ,, ax rkm;(X) =0 (resp.

€ (0,00), resp. = 00).
The asymptotic formula of Theorem A provides a good estimate of the homotopy log index

ax in terms of oy nax rk m;(X), provided k > K for sufficiently large K. Unfortunately we

are not able to give any estimate for K and, indeed, nothing we know gives any suggestion that
this might be possible.

By contrast it is possible to directly estimate ax from the integers rkm;(X), i < rdim X,
or equivalently from the integers rk H;(2X), ¢ < rdim X, with an error bound depending
explicitly in 7. This, our third main result, reads.

Theorem C. [Ref3] Let X be a rationally hyperbolic n-dimensional CW complex and set
h = max; dim H'(X;Q). Then for logr > 2"n?"5 lognh,

rkm(X)  nlog2n < rkm;(X) N B(n,h)

ax max

max . :
r<i<nr i r r<i<2r 7 10logr



The main part of Theorem A asserts that for the 'universal sequence’ §, = 1/k, given any
n-dimensional rationally hyperbolic CW complex X there is a constant ¢ = ¢(n, h) such that
for k sufficiently large maxy o<i<kin W > ax — 0. This is the assertion that does not
generalize to rationally hyperbolic spaces of finite Lusternik Schnirelmann category. Our final

main theorem reads:

Theorem D. [Ref3| Let §;, — 0 be any sequence of non-negative numbers and let o € (0, 00)
be any number. Then there is a simply connected rationally hyperbolic wedge of spheres X

such that ax = «, and for any ¢ > 0 and any integer d > 0 there are infinitely many k for

which log k()
og rkm;
ST S

The proof of Theorems A,B,C and D proceeds by a careful analysis of the homotopy Lie
algebra Ly = m,(QX) ® Q with Lie bracket given by the Samelson product.

We work over a ground field kk of characteristic # 2. A graded Lie algebra, L, is a graded
vector space equipped with a Lie bracket [, |: L ® L — L, satisfying

[z, y] + (—1)%®™9Y [y, 2] =0 and [z, [y, z2]] = [[z, 9], 2] + (—1)%E" Y]y, [z, 2],

and [z, [z, z]] = 0, @ € Logq if char k = 3 (This condition is automatic if char k is not 3.)
As in the classical case, L has a universal enveloping algebra UL, and we define

depth L = least m (or oo) such that Ext{;, (lk,UL) # 0.
Similarly, if M is an L-module, then
grade; M = least ¢ (or oo) such that Ext{,, (M,UL) #0.

The graded Lie algebra, L, is connected if L = {L;};>¢ and of finite type if each dim L; < oc;
graded Lie algebras satisfying both condition are called cft graded Lie algebras.

Suppose now X is a simply connected CW complex of finite type. Then the rational homotopy
Lie algebra, Lx = m.(2X) ® Q (with Lie bracket given by the Samelson product) is a cft
graded Lie algebra. The motivation for the study of cft graded Lie algebras of finite depth is
the following result;

Theorem. If X is a simply connected CW complex of finite type, then
depth Lx < caty X

where caty X denotes the rational Lusternik-Schnirelmann category of X. In particular, if X is
a finite CW complex, then depth Lx is finite.
An important question connected with the Lie algebra Ly is the behavior of the integers
dim (Ly);, since
dim(Ly); = rankm;1(X),



as explained above. We also focus on the structure of cft graded Lie algebras of finite depth,
with particular attention to the interplay between depth and growth of the integers dim L;,
and to the structure of the ideals in L. Our aim is a classification theory for the ideals in a
cft graded Lie algebra of finite depth, and in particular for the homotopy Lie algebras Lx of a
space of finite Lusternik-Schnirelmann category. A crucial notion is that of full subspace.

Definition : A subspace W of a graded vector space V' = {V;};>¢ is full in V if for some fixed
A, q and N (all positive)

k+q
dimV, <X > dimW; k>N
i=k

An easy argument then shows that an equivalence relation on the subspaces of V' is defined
by
U~W & Uand Warefullin U+ W.

Two subspaces V, W in a graded Lie algebra L are called L-equivalent (V ~ W) if for all
ideals K C L, VN K ~ W N K. As we show in section 5, the set £ of L-equivalence classes
[I] of ideals I C L is a distributive lattice under the operations [I] < [J] if INJ ~p I,
IV I[J] = [I+J]and [I] A[J] = [I N J]. In such a lattice each maximal chain of strict
inequalities 0 < [I(1)] < --- < [I(r)] = [I] has the same length 7; the number r is the height of
1], ht[I].

Now our main result in [Ref2] reads

Theorem. Let L be a cft graded Lie algebra of finite depth m and suppose ht|L] = r. Then
r < m. Moreover, the number v; of L-equivalence classes of ideals in L satisfies v;, < 2" and
equality holds if and only if L ~p, I(1) @ --- @ I(r) where the I(i) are ideals of height 1.

Un CV et une liste de publications de S. Halperin sont joints.
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