Topological Complexity and Motion Planning in Certain Real Grassmannians

Khalid BOUTAHIR

Faculté des Sciences de Meknès

11 Octobre 2014

UMI (FSM)

A motion planner on a space X will usually have some amount of discontinuity.

∃ ► < ∃ ►</p>

A motion planner on a space X will usually have some amount of discontinuity.

An instrument to measure this discontinuity is the topological complexity of the space ${\sf X}$.

A motion planner on a space X will usually have some amount of discontinuity.

An instrument to measure this discontinuity is the topological complexity of the space ${\sf X}$.

A main reason of interest in this quantity is that it is a homotopy invariant of the configuration space.

Definition

The topological complexity of the space X , TC(X), is the minimal number k such that there exists an open cover $X \times X = U_1 \cup ... \cup U_k$ with the property that each U_i admits a continuous motion planner $s_i: U_i \longrightarrow PX$.

Definition

The topological complexity of the space X , TC(X), is the minimal number k such that there exists an open cover $X \times X = U_1 \cup ... \cup U_k$ with the property that each U_i admits a continuous motion planner $s_i: U_i \longrightarrow PX$.

Definition

the Lusternik-Schnirelmann category of a topological space, cat(X), is the least integer n such that X can be covered by (n + 1) open subsets contractible in X, and is infinite if no such n exists.

Definition

The topological complexity of the space X , TC(X), is the minimal number k such that there exists an open cover $X \times X = U_1 \cup ... \cup U_k$ with the property that each U_i admits a continuous motion planner $s_i: U_i \longrightarrow PX$.

Definition

the Lusternik-Schnirelmann category of a topological space, cat(X), is the least integer n such that X can be covered by (n + 1) open subsets contractible in X, and is infinite if no such n exists.

 $\label{eq:proposition 1} \ensuremath{\text{Proposition 1}} \ensuremath{\text{For a path-connected topological space X it holds}$

$$cat(X) \leq TC(X) \leq cat(X \times X) \leq 2cat(X)-1.$$

Definition

The topological complexity of the space X , TC(X), is the minimal number k such that there exists an open cover $X \times X = U_1 \cup ... \cup U_k$ with the property that each U_i admits a continuous motion planner $s_i: U_i \longrightarrow PX$.

Definition

the Lusternik-Schnirelmann category of a topological space, cat(X), is the least integer n such that X can be covered by (n + 1) open subsets contractible in X, and is infinite if no such n exists.

 $\label{eq:proposition 1} \ensuremath{\text{Proposition 1}} \ensuremath{\,\text{For a path-connected topological space X it holds}$

$$cat(X) \leq TC(X) \leq cat(X \times X) \leq 2cat(X)-1.$$

Proposition 2 Given two polyhedra X and Y one has

$$TC(X \times Y) \leq TC(X) + TC(Y) - 1.$$

Theorem (1)

If X is an r-connected simplicial polyhedron with covering dimension dimX, then 2 + 1

$$TC(X) < \frac{2\dim X + 1}{r+1} + 1.$$

In particular we have the general bound

 $TC(X) \leq 2dimX + 1.$

Theorem (1)

If X is an r-connected simplicial polyhedron with covering dimension dimX, then Q = X + 1

$$TC(X) < \frac{2\dim X + 1}{r+1} + 1.$$

In particular we have the general bound

$$TC(X) \leq 2dimX + 1.$$

Theorem (2)

Let X be a cell complex with $\pi_1(X) = \mathbb{Z}_2$. Then

 $TC(X) \leq 2dim(X).$

Furthermore, for a closed manifold X with $\pi_1(X) = \mathbb{Z}_2$ it holds that

 $TC(X) \leq 2dim(X) - 1$

UMI (FSM)

Khalid BOUTAHIR

Theorem (3)

For a closed connected n-dimensional manifold X with $\pi_1(X) = \mathbb{Z}_2$ one has cat(X) = dim(X) + 1 if and only if $\omega^n = 0 \in H^n(X; \mathbb{Z}_2)$ where $\omega \in H^1(X; \mathbb{Z}_2)$ is the generator.

We now have a clear picture of the case when the space X has fundamental group $\pi_1(X) = \mathbb{Z}_2$

Theorem (3)

For a closed connected n-dimensional manifold X with $\pi_1(X) = \mathbb{Z}_2$ one has cat(X) = dim(X) + 1 if and only if $\omega^n = 0 \in H^n(X; \mathbb{Z}_2)$ where $\omega \in H^1(X; \mathbb{Z}_2)$ is the generator.

We now have a clear picture of the case when the space X has fundamental group $\pi_1(X) = \mathbb{Z}_2$

Theorem (4)

Let X be a finite cell complex such that $\pi_1(X) = \mathbb{Z}_3$.

 Assume that either dim X is odd or dim X = 2n is even and the 3-adic expansion of n contains at least one digit 2. Then, TC(X) ≤ 2 dim(X).

② For any integer n ≥ 1 having only the digits 0 and 1 in its 3-adic expansion there exists a finite polyhedron X of dimension 2n with $\pi_1(X) = \mathbb{Z}_3$ and $TC(X) = 2 \dim(X) + 1$.

UMI (FSM)

Khalid BOUTAHIR

Definition

Let V be a finite-dimensional vector space over a field k. The Grassmannian Gr(k,V) is the set of all k-dimensional linear subspaces of V. If V has dimension n, then the Grassmannian is also denoted Gr(k,n), and if the underlying field is \mathbb{R} this Grassmannian is also denoted $G_k(\mathbb{R}^n)$ we can write, by identification, $G_k(\mathbb{R}^n) = O(n)/(O(k) \times O(n - k))$ where O(n) is the orthogonal group.

Definition

Let V be a finite-dimensional vector space over a field k. The Grassmannian Gr(k,V) is the set of all k-dimensional linear subspaces of V. If V has dimension n, then the Grassmannian is also denoted Gr(k,n), and if the underlying field is \mathbb{R} this Grassmannian is also denoted $G_k(\mathbb{R}^n)$ we can write, by identification, $G_k(\mathbb{R}^n) = O(n)/(O(k) \times O(n - k))$ where O(n) is the orthogonal group.

Let $G_k(\mathbb{R}^{n+k})$ be the set of all real k-dimensional subspaces of \mathbb{R}^{n+k} . $G_k(\mathbb{R}^{n+k})$ is a compact connected differentiable manifold of real dimension nk with $\pi_1(G_k(\mathbb{R}^{n+k})) = \mathbb{Z}_2$. In particular, $G_1(\mathbb{R}^{n+1}) = \mathbb{R}P^n$. From theorem (2) we have the upper bound $TC(G_k(\mathbb{R}^{n+k})) \leq 2kn$. Moreover, it follows from theorem (2) and theorem (3) that $TC(G_k(\mathbb{R}^{n+k})) \leq 2kn-1$.

In [I. Berstein, **On the Lusternik-Schnirelmann category of Grassmannians**], the author shows that in some cases

$$cat(G_k(\mathbb{R}^{n+k})) = dim(G_k(\mathbb{R}^{n+k})) + 1 = nk+1.$$

From theorem (2) we have the upper bound $TC(G_k(\mathbb{R}^{n+k})) \leq 2kn$. Moreover, it follows from theorem (2) and theorem (3) that $TC(G_k(\mathbb{R}^{n+k})) \leq 2kn-1$. In [I. Berstein, On the Lusternik-Schnirelmann category of

Grassmannians], the author shows that in some cases

$$cat(G_k(\mathbb{R}^{n+k})) = dim(G_k(\mathbb{R}^{n+k})) + 1 = nk+1.$$

Notice that by applying the upper bound given by **Proposition 1** only allows to establish the general dimensional upper bound $TC(G_k(\mathbb{R}^n)) \leq 2kn+1$.

Definition

We define ht(ω_1), the height of ω_1 , to be ht(ω_1):= sup{m; $\omega_1^m \neq 0 \in H^*(G_k(\mathbb{R}^{n+k}); \mathbb{Z}_2)$ }.

Definition

We define ht(ω_1), the height of ω_1 , to be ht(ω_1):= sup{m; $\omega_1^m \neq 0 \in H^*(G_k(\mathbb{R}^{n+k}); \mathbb{Z}_2)$ }.

Proposition 3 (R. Stong, **Cup products in Grassmannians**, Topology Appl. 13, 103-113, (1982)) In $G_k(\mathbb{R}^{n+k})$, for $2 \le k \le n$ with $2^s < n + k \le 2^{s+1}$, we have

$$\mathsf{ht}(\omega_1) = \begin{cases} 2^{s+1} - 2, & \text{if } k = 2 \text{ or if } k = 3 \text{ and } n+k = 2^s + 1, \\ 2^{s+1} - 1, & \text{otherwise.} \end{cases}$$

Theorem (5)

For $2 \le k \le n$ with $2^{s} < n + k \le 2^{s+1}$, we have the following .

- **1** If k=2, then $TC(G_2(\mathbb{R}^{n+2})) \ge n$.
- ② If k=3 and if n +3 =2 ^s+1, then $TC(G_3(\mathbb{R}^{n+3})) \ge 2n +2$. If k =3 and if nn +3 ≠2 ^s+1, then $TC(G_3(\mathbb{R}^{n+3})) \ge n +2$.

• If $4 \leq k \leq n$, then $TC(G_k(\mathbb{R}^{n+k})) \geq n + k-1$.

Theorem (5)

For $2 \le k \le n$ with $2^{s} < n + k \le 2^{s+1}$, we have the following .

- **1** If k=2, then $TC(G_2(\mathbb{R}^{n+2})) \ge n$.
- ② If k=3 and if n +3 =2 ^s+1, then $TC(G_3(\mathbb{R}^{n+3})) \ge 2n +2$. If k =3 and if nn +3 ≠2 ^s+1, then $TC(G_3(\mathbb{R}^{n+3})) \ge n +2$.

• If $4 \le k \le n$, then $TC(G_k(\mathbb{R}^{n+k})) \ge n + k-1$.

Proof.

We apply **Proposition 1** to see that $TC(G_k(\mathbb{R}^{n+k})) \ge cat(G_k(\mathbb{R}^{n+k})) \ge ht(\omega_1)$ and the assertions follow from **Proposition 3**.

- - E + - E +

$\mathbf{TC}(\mathbf{G}_2(\mathbb{R}^4)$

It is a quick observation from **Proposition 1** and **Theorem (5)** that

 $2 \leq \mathsf{TC}(\mathsf{G}_2(\mathbb{R}^4)) \leq 9.$

æ

・ロト ・聞ト ・ ほト ・ ほト

 $\frac{\mathsf{TC}(\mathsf{G}_2(\mathbb{R}^4))}{\mathsf{It} \text{ is a quick observation from Proposition 1 and Theorem (5) that}$

 $2 \leq \mathsf{TC}(\mathsf{G}_2(\mathbb{R}^4)) \leq 9.$

We have $3 \leq TC(G_2(\mathbb{R}^4)) \leq 5$.

æ

- < E ► < E ►

 $\frac{\mathsf{TC}(\mathsf{G}_2(\mathbb{R}^4))}{\text{It is a quick observation from Proposition 1 and Theorem (5) that}$

 $2 \leq \mathsf{TC}(\mathsf{G}_2(\mathbb{R}^4)) \leq 9.$

Lemma (1)

We have
$$3 \leq TC(G_2(\mathbb{R}^4)) \leq 5$$
.

Proof.

In [H. Hiller, **On the cohomology of real Grassmannians**, p. 529], it is shown that $cat(G_2(\mathbb{R}^{2^s+2})) = 2^{s+1} - 1$. Thus, $cat(G_2(\mathbb{R}^4)) = 3$. By **Theorem (5)**, we see that $3 \leq TC(G_2(\mathbb{R}^4)) \leq 5$.

 $\frac{\mathsf{TC}(\mathsf{G}_2(\mathbb{R}^4))}{\text{It is a quick observation from Proposition 1 and Theorem (5) that}$

 $2 \leq \mathsf{TC}(\mathsf{G}_2(\mathbb{R}^4)) \leq 9.$

Lemma (1)

We have
$$3 \leq TC(G_2(\mathbb{R}^4)) \leq 5$$
.

Proof.

In [H. Hiller, **On the cohomology of real Grassmannians**, p. 529], it is shown that $cat(G_2(\mathbb{R}^{2^s+2})) = 2^{s+1} - 1$. Thus, $cat(G_2(\mathbb{R}^4)) = 3$. By **Theorem (5)**, we see that $3 \leq TC(G_2(\mathbb{R}^4)) \leq 5$.

In [K.J.PEARSON AND TAN ZHANG, **Topological Complexity and Motion Planning in Certain Real Grassmannians]** there it was wrongly assumed that $TC(X)=cat(X \times X)$ (Theorem1.8). This compromises the result " $TC(G_2(\mathbb{R}^4))=5$ "

UMI (FSM)

MERCI

UMI (FSM)

11 / 11

æ

イロト イヨト イヨト イヨト