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INTRODUCTION: Topological Complexity of a space

A motion planner on a space X will usually have some amount of
discontinuity.
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INTRODUCTION: Topological Complexity of a space

A motion planner on a space X will usually have some amount of
discontinuity.

An instrument to measure this discontinuity is the topological complexity
of the space X .

A main reason of interest in this quantity is that it is a homotopy invariant
of the configuration space.
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INTRODUCTION: Topological Complexity of a space

Definition

The topological complexity of the space X , TC(X ), is the minimal
number k such that there exists an open cover XXX =U;U...UUy with the
property that each U; admits a continuous motion planner s;:U; —PX.

UMI (FSM) Khalid BOUTAHIR 3/11



INTRODUCTION: Topological Complexity of a space

Definition

The topological complexity of the space X , TC(X ), is the minimal
number k such that there exists an open cover XXX =U;U...UUy with the
property that each U; admits a continuous motion planner s;:U; —PX.

Definition

the Lusternik-Schnirelmann category of a topological space, cat(X), is the
least integer n such that X can be covered by (n + 1) open subsets
contractible in X, and is infinite if no such n exists.

UMI (FSM) Khalid BOUTAHIR 3/11



INTRODUCTION: Topological Complexity of a space

Definition

The topological complexity of the space X , TC(X ), is the minimal
number k such that there exists an open cover XXX =U;U...UUy with the
property that each U; admits a continuous motion planner s;:U; —PX.

Definition

the Lusternik-Schnirelmann category of a topological space, cat(X), is the
least integer n such that X can be covered by (n + 1) open subsets
contractible in X, and is infinite if no such n exists.

Proposition 1 For a path-connected topological space X it holds

cat(X) <TC(X) <cat(XxX)<2cat(X)-1.
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INTRODUCTION: Topological Complexity of a space

Definition

The topological complexity of the space X , TC(X ), is the minimal
number k such that there exists an open cover XXX =U;U...UUy with the
property that each U; admits a continuous motion planner s;:U; —PX.

Definition

the Lusternik-Schnirelmann category of a topological space, cat(X), is the
least integer n such that X can be covered by (n + 1) open subsets
contractible in X, and is infinite if no such n exists.

Proposition 1 For a path-connected topological space X it holds
cat(X) <TC(X) <cat(XxX)<2cat(X)-1.
Proposition 2 Given two polyhedra X and Y one has
TC(XXY)<TC(X)+TC(Y)-1.
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TC of Spaces with Small Fundamental Group

Theorem (1)

If X is an r-connected simplicial polyhedron with covering dimension dimX,
then .
TC(X) < 2dimX +1
r+1
In particular we have the general bound

+ 1.

TC(X) < 2dimX + 1.
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TC of Spaces with Small Fundamental Group

Theorem (1)

If X is an r-connected simplicial polyhedron with covering dimension dimX,
then

2dimX +1
TC(X —  +1.
C(X) < 1 +

In particular we have the general bound

TC(X) < 2dimX + 1.

Theorem (2)

Let X be a cell complex with 711 (X) =Z;. Then

TC(X) < 2dim(X).

Furthermore, for a closed manifold X with 1t1(X) = Z;, it holds that

TC(X) <2dim(X)—1
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TC of Spaces with Small Fundamental Group

For a closed connected n-dimensional manifold X with 1ty (X ) =Z, one
has cat(X ) = dim(X ) + 1 if and only if " = 0 € H"(X ; Z;) where w
€ H'(X ; Z,) is the generator.

We now have a clear picture of the case when the space X has
fundamental group 111 (X) = Z;
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TC of Spaces with Small Fundamental Group

For a closed connected n-dimensional manifold X with 7ty (X ) =Z, one
has cat(X ) = dim(X ) + 1 if and only if w" = 0 € H"(X ; Z>) where w
€ HY(X ; Z,) is the generator.

We now have a clear picture of the case when the space X has
fundamental group 111 (X) = Z;

Theorem (4)
Let X be a finite cell complex such that w1 (X ) = Zs.

@ Assume that either dim X is odd or dim X = 2n is even and the
3-adic expansion of n contains at least one digit 2. Then, TC(X ) < 2
dim(X ).

@ For any integer n > 1 having only the digits 0 and 1 in its 3-adic
expansion there exists a finite polyhedron X of dimension 2n with
(X ) =23 and TC(X ) =2 dim(X ) + 1.
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Grassmannians

Definition

Let V be a finite-dimensional vector space over a field k. The
Grassmannian Gr(k,V) is the set of all k-dimensional linear subspaces of V.
If V has dimension n, then the Grassmannian is also denoted Gr(k,n), and
if the underlying field is R this Grassmannian is also denoted Gy (IR") we
can write, by identification, Gx(IR")= O(n)/(O(k) xO(n — k)) where
O(n) is the orthogonal group.
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Grassmannians

Definition

Let V be a finite-dimensional vector space over a field k. The
Grassmannian Gr(k,V) is the set of all k-dimensional linear subspaces of V.
If V has dimension n, then the Grassmannian is also denoted Gr(k,n), and
if the underlying field is R this Grassmannian is also denoted Gy (IR") we
can write, by identification, Gx(IR")= O(n)/(O(k) xO(n — k)) where
O(n) is the orthogonal group.

Let Gx(R"¥) be the set of all real k-dimensional subspaces of R
Gi(R"k) is a compact connected differentiable manifold of real
dimension nk with 711 (G (R"*%)) = Z,. In particular, Gy (R"*!) = RP".
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Topological Complexity of Grassmannians

From theorem (2) we have the upper bound TC(G(IR"*)) < 2kn.
Moreover, it follows from theorem (2) and theorem (3) that
TC(Gx(R™K)) < 2kn-1.

In [I. Berstein, On the Lusternik-Schnirelmann category of
Grassmannians], the author shows that in some cases

cat(G(R"T%)) = dim(Gx(R"T%))+1=nk+1.

UMI (FSM) Khalid BOUTAHIR 7/11



Topological Complexity of Grassmannians

From theorem (2) we have the upper bound TC(G(IR"*)) < 2kn.
Moreover, it follows from theorem (2) and theorem (3) that
TC(Gx(R™K)) < 2kn-1.

In [I. Berstein, On the Lusternik-Schnirelmann category of
Grassmannians], the author shows that in some cases

cat(G(R"T%)) = dim(Gx(R"T%))+1=nk+1.

Notice that by applying the upper bound given by Proposition 1 only
allows to establish the general dimensional upper bound TC(G4(IR")) <
2kn+1.
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Topological Complexity of Grassmannians

Definition

We define ht(w;), the height of w1, to be ht(w;):= sup{m; w]" # 0 €
H*(Gx(R"K); Z,)}.
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Topological Complexity of Grassmannians

Definition

We define ht(w;), the height of w1, to be ht(w;):= sup{m; w]" # 0 €
H*(Gx(R"K); Z,)}.

Proposition 3 (R. Stong, Cup products in Grassmannians, Topology

Appl. 13, 103-113, (1982))
In G4 (R"K), for 2 < k < n with 2° < n 4 k < 2571 we have

ht(ws) — 25T —2 if k=2orif k=3and n+k=2°+1,
v 2st1 1, otherwise.
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Topological Complexity of Grassmannians

Theorem (5)
For2 < k< nwith2 < n+ k< 2%! we have the following .

Q@ If k=2, then TC(Gy(R"*2)) > n.

Q If k=3 and if n +3 =2°5+1, then TC(G3(R""3)) >2n +2.
If k =3 and if nn +3 #2°+1, then TC(G3(R"*3)) >n +2.

Q If4< k< n, then TC(G(R"K)) > n +k-1.
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Topological Complexity of Grassmannians

Theorem (5)
For2 < k< nwith2 < n+ k< 2%! we have the following .

Q@ If k=2, then TC(Gy(R"*2)) > n.

Q If k=3 and if n +3 =2°5+1, then TC(G3(R""3)) >2n +2.
If k =3 and if nn +3 #2°+1, then TC(G3(R"*3)) >n +2.

Q If4< k< n, then TC(G(R"K)) > n +k-1.

We apply Proposition 1 to see that TC(Gy(R""%)) > cat(Gy(R")) >
ht(wi) and the assertions follow from Proposition 3.

[
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EXAMPLE

TC(G,(R*)
It is a quick observation from Proposition 1 and Theorem (5) that

2 < TC(Gy(R*)) < 9.
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It is a quick observation from Proposition 1 and Theorem (5) that

2 < TC(Gy(R*)) < 0.

We have 3 <TC(Gy(R*)) < 5. \
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EXAMPLE

TC(G,(R*)
It is a quick observation from Proposition 1 and Theorem (5) that

2 < TC(Gy(R*)) < 0.

We have 3 <TC(Gy(R*)) < 5.

In [H. Hiller, On the cohomology of real Grassmannians, p. 529], it is
shown that cat(Gy(IR**2)) = 2 s*1 - 1. Thus, cat(Gy(IR*)) = 3. By
Theorem (5), we see that 3 < TC(G,(IR*)) < 5. O
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EXAMPLE

TC(G,(R*)
It is a quick observation from Proposition 1 and Theorem (5) that

2 < TC(Gy(R*)) < 0.

We have 3 <TC(Gy(R*)) < 5.

In [H. Hiller, On the cohomology of real Grassmannians, p. 529], it is
shown that cat(Gy(IR**2)) = 2 s*1 - 1. Thus, cat(Gy(IR*)) = 3. By
Theorem (5), we see that 3 < TC(G,(IR*)) < 5. O

In [K.J.PEARSON AND TAN ZHANG, Topological Complexity and
Motion Planning in Certain Real Grassmannians] there it was wrongly
assumed that TC(X)=cat(XxX) (Theorem1.8). This compromises the
result "TC(Gy(IR*))=5"
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