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INTRODUCTION: Topological Complexity of a space

A motion planner on a space X will usually have some amount of
discontinuity.

An instrument to measure this discontinuity is the topological complexity
of the space X .
A main reason of interest in this quantity is that it is a homotopy invariant
of the configuration space.
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INTRODUCTION: Topological Complexity of a space

Definition
The topological complexity of the space X , TC(X ), is the minimal
number k such that there exists an open cover X×X =U1∪...∪Uk with the
property that each Ui admits a continuous motion planner si :Ui −→PX.

Definition
the Lusternik-Schnirelmann category of a topological space, cat(X), is the
least integer n such that X can be covered by (n + 1) open subsets
contractible in X, and is infinite if no such n exists.

Proposition 1 For a path-connected topological space X it holds

cat(X) ≤TC(X) ≤cat(X×X)≤2cat(X)-1.
Proposition 2 Given two polyhedra X and Y one has

TC(X×Y)≤TC(X)+TC(Y)-1.
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TC of Spaces with Small Fundamental Group

Theorem (1)
If X is an r-connected simplicial polyhedron with covering dimension dimX,
then

TC (X ) <
2 dimX + 1
r + 1

+ 1.

In particular we have the general bound

TC (X ) ≤ 2dimX + 1.

Theorem (2)

Let X be a cell complex with π1(X) =Z2. Then

TC (X ) ≤ 2dim(X ).

Furthermore, for a closed manifold X with π1(X) = Z2 it holds that

TC (X ) ≤ 2dim(X )− 1

assuming that ωn= 0, where n = dim(X) and ω ∈ H1(X;Z2) is the
generator.
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TC of Spaces with Small Fundamental Group

Theorem (3)

For a closed connected n-dimensional manifold X with π1(X ) =Z2 one
has cat(X ) = dim(X ) + 1 if and only if ωn = 0 ∈ Hn(X ; Z2) where ω
∈ H1(X ; Z2) is the generator.

We now have a clear picture of the case when the space X has
fundamental group π1(X ) = Z2

Theorem (4)

Let X be a finite cell complex such that π1(X ) = Z3.

1 Assume that either dim X is odd or dim X = 2n is even and the
3-adic expansion of n contains at least one digit 2. Then,TC(X ) ≤ 2
dim(X ).

2 For any integer n ≥ 1 having only the digits 0 and 1 in its 3-adic
expansion there exists a finite polyhedron X of dimension 2n with
π1(X ) = Z3 and TC(X ) = 2 dim(X ) + 1.
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Grassmannians

Definition
Let V be a finite-dimensional vector space over a field k. The
Grassmannian Gr(k,V) is the set of all k-dimensional linear subspaces of V.
If V has dimension n, then the Grassmannian is also denoted Gr(k,n), and
if the underlying field is R this Grassmannian is also denoted Gk (Rn) we
can write, by identification, Gk (Rn)= O(n)/(O(k) ×O(n —k)) where
O(n) is the orthogonal group.

Let Gk (Rn+k ) be the set of all real k-dimensional subspaces of Rn+k .
Gk (Rn+k ) is a compact connected differentiable manifold of real
dimension nk with π1(Gk (Rn+k )) = Z2. In particular, G1(Rn+1) = RPn.
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Topological Complexity of Grassmannians

From theorem (2) we have the upper bound TC(Gk (Rn+k )) ≤ 2kn.
Moreover, it follows from theorem (2) and theorem (3) that
TC(Gk (Rn+k )) ≤ 2kn-1.
In [I. Berstein, On the Lusternik-Schnirelmann category of
Grassmannians], the author shows that in some cases

cat(Gk (Rn+k )) = dim(Gk (Rn+k ))+1=nk+1.

Notice that by applying the upper bound given by Proposition 1 only
allows to establish the general dimensional upper bound TC(Gk (Rn)) ≤
2kn+1.
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Topological Complexity of Grassmannians

Definition
We define ht(ω1), the height of ω1, to be ht(ω1):= sup{m; ωm

1 6= 0 ∈
H∗(Gk (Rn+k ); Z2)}.

Proposition 3 (R. Stong, Cup products in Grassmannians, Topology
Appl. 13, 103-113, (1982))
In Gk (Rn+k ), for 2 ≤ k ≤ n with 2s < n + k ≤ 2s+1, we have

ht(ω1) =
{
2s+1 − 2, if k = 2 or if k = 3 and n+ k = 2s + 1,

2s+1 − 1, otherwise.
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Topological Complexity of Grassmannians

Theorem (5)

For 2 ≤ k ≤ n with 2s < n + k ≤ 2s+1, we have the following .
1 If k=2, then TC(G2(Rn+2)) ≥ n.
2 If k=3 and if n +3 =2 s+1, then TC(G3(Rn+3)) ≥2n +2.
If k =3 and if nn +3 6=2 s+1, then TC(G3(Rn+3)) ≥n +2.

3 If 4 ≤ k ≤ n, then TC(Gk (Rn+k )) ≥ n +k-1.

Proof.

We apply Proposition 1 to see that TC(Gk (Rn+k )) ≥ cat(Gk (Rn+k )) ≥
ht(ω1) and the assertions follow from Proposition 3.
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EXAMPLE

TC(G2(R
4)

It is a quick observation from Proposition 1 and Theorem (5) that

2 ≤ TC(G2(R4)) ≤ 9.

Lemma (1)

We have 3 ≤TC(G2(R4)) ≤ 5.

Proof.
In [H. Hiller, On the cohomology of real Grassmannians, p. 529], it is
shown that cat(G2(R2s+2)) = 2 s+1 - 1. Thus, cat(G2(R4)) = 3. By
Theorem (5), we see that 3 ≤ TC(G2(R4)) ≤ 5.

In [K.J.PEARSON AND TAN ZHANG, Topological Complexity and
Motion Planning in Certain Real Grassmannians] there it was wrongly
assumed that TC(X)=cat(X×X) (Theorem1.8). This compromises the
result "TC(G2(R4))=5"
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