SPECTRAL SEQUENCE OF A FILTRED SPACE

Hassan Aaya

Université Hassan II

Casablanca

SUMMARY

- Spectral Sequences and Convergence
- Construction of Spectral Sequences
- Some examples

Let C be an abelian category.

Definition (Spectral sequences): A (homologically graded) spectral sequence is a family of objects $\{E^r_{pq}\}$ of C, for all $p,q\in\mathbb{Z}$ and $r\geq a$ (with a fixed $a\in\mathbb{Z}$), together with differentials $d^r_{pq}\colon E^r_{pq}\longrightarrow E^r_{p-r,q+r-1}$ which satisfy $d^r\circ d^r=0$. Furthermore we require that there are isomorphisms

$$E_{pq}^{r+1} \cong H(E_{pq}^r) = \ker(d_{pq}^r) \Big/ \mathrm{im}(d_{p+r,q-r+1}^r) \; .$$

By n := p + q we denote the *total degree* of E_{pq}^r .

The collections $(E_{pq}^r)_{p,q\in\mathbb{Z}}$ for fixed r are called the *sheets* or *pages* of the spectral sequence. By the isomorphisms required above, we imagine that we get from one sheet to the next one ("turing a page around") by taking homology.

$$\dots \longleftarrow E_{0,3}^1 \longleftarrow E_{1,3}^1 \longleftarrow E_{2,3}^1 \longleftarrow E_{3,3}^1 \longleftarrow \dots$$

$$\dots \longleftarrow E_{0,3}^1 \longleftarrow E_{1,3}^1 \longleftarrow E_{2,3}^1 \longleftarrow E_{3,3}^1 \longleftarrow \dots$$
first sheet
$$\dots \longleftarrow E_{0,2}^1 \longleftarrow E_{1,2}^1 \longleftarrow E_{2,2}^1 \longleftarrow E_{3,2}^1 \longleftarrow \dots$$

$$\ldots \longleftarrow E^1_{0,1} \longleftarrow E^1_{1,1} \longleftarrow E^1_{2,1} \longleftarrow E^1_{3,1} \longleftarrow \ldots$$

$$\dots \longleftarrow E_{0,0}^1 \longleftarrow E_{1,0}^1 \longleftarrow E_{2,0}^1 \longleftarrow E_{3,0}^1 \longleftarrow \dots$$

Hassan AAYA 2014-2015 University: Hassan II Casablanca

Definition (Convergence): Let $\{H_n\}$ be a family of objects of C.

We say a spectral sequence . . .

(a) ... weakly converges to H_* if there exists a filtration

$$\ldots \subseteq F_{p-1}H_n \subseteq F_pH_n \subseteq F_{p+1}H_n \subseteq \ldots \subseteq H_n$$

for each $n \in \mathbb{Z}$ and furthermore isomorphisms

$$\beta_{pq}: E_{pq}^{\infty} \cong F_p H_{p+q} / F_{p-1} H_{p+q}$$
.

(b) ... approaches H_* if it weakly converges to H_* and 1

$$H_n = \bigcup F_p H_n$$
 and $\bigcap F_p H_n = 0$.

(c) ... converges to H_* if it approaches H_* and $H_n = \varprojlim \left(H_n / F_p H_n \right)$. We denote convergence by $E_{pq}^r \Rightarrow H_{p+q}$.

Construction 2.1 (Exact couples and their derivations): An exact couple is a pair of objects D and E of C and morphisms i, j and k such that the diagram

is exact at each vertex. Since d := jk complies with $d^2 = (jk)^2 = j(kj)k = j0k = 0$ we can apply homology by setting $H(E) = \ker(d)/\operatorname{im}(d)$ and get the *derived exact couple*

with $j^{(2)}(i(x)) = [j(x)]$ and $k^{(2)}([e]) = k(e)$, $x \in D$ and $[e] \in H(E)$. It is an easy computation that $j^{(2)}$ and $k^{(2)}$ are well-defined and that the derived couple is exact. It suggests itself to iterate this process and set $E^1 := E$ and $E^r = H(E^{r-1})$, $d^1 := d = jk$ and $d^r := j^{(r)}k^{(r)}$.

The (r + 1)-th exact couple looks like

Let C_* be a complex with a filtration $\dots F_p C_* \subseteq F_{p+1} C_* \subseteq \dots \subseteq C_*$

such that there are integers s < t for each n with $F_sC_n = 0$ and $F_tC_n = C_n$. (Such a filtration is called bounded. Particularly this means $F_kC_n = 0$ for all $k \le s$ and $F_kC_n = C_n$ for all $k \ge t$. We will always consider canonically bounded filtrations, i.e. s = -1 and $F_nC_n = C_n$ for all n – what leads to a first quadrant spectral sequence.)

We get short exact sequences

$$0 \longrightarrow F_{p-1}C_* \xrightarrow{i} F_pC_* \xrightarrow{\pi_p} F_pC_* / F_{p-1}C_* \longrightarrow 0$$

and, by applying homology, long exact secquences

$$\dots \longrightarrow H_{p} + q' + 1(F_{p-1}C_*) \xrightarrow{i} H_{p+q}(F_{p}C_*) \xrightarrow{j} H_{p+q}\left(F_{p}C_* \middle/ F_{p-1}C_*\right) \xrightarrow{\delta} H_{p-1+q}(F_{p}C_*) \longrightarrow \dots$$

Hassan AAYA

Now we can roll up those long exact sequences into an exact triangle

which gives us a spectral sequence E_{pq}^{r} .

SOME EXAMPLES

1. Leray-Serre spectral sequence. Given a fibration $F \hookrightarrow X \to B$ with trivial monodromy on the homology of the fibers, $E_{p,q}^2 = H_p(B; H_q(F))$ and the spectral sequence abuts to $H_*(X)$. (If there is monodromy, this still works but replacing $E_{p,q}^2 = H_p(B; H_q(F))$ with $E_{p,q}^2 = H_p(B; \mathcal{H}_q(F))$, where $\mathcal{H}_q(F)$ is a local system on B). There is also a cohomology version.

SOME EXAMPLES

2. Atiyah-Hirzebruch spectral sequence. If F_* is a generalized homology theory (such as K-homology, bordism, etc.), then there is a spectral sequence with $E_{p,q}^2 = H_p(X; F_q(pt))$ that abuts to $F_*(X)$. There is also a generalized cohomology version.

SOME EXAMPLES

Hodge-De Rham spectral sequence

Adams spectral sequence

• • • •

Hassan AAYA 2014-2015 University: Hassan II Casablanca

A SUIVRE...