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In this talk, we give a brief survey on the Serre spectral sequence
{E r
∗,∗(p), d r} over K = Z, and Z2, of the path space �bration

p : P(M)→ M,

with M = F (Rn+1, k) or F (Sn+1, k + 1). Here the paths are based
at an appropriate basepoint.
In the case where M = Rn+1, the spectral sequence stabilizes at

the nth term, in the sense that

En+1
∗,∗ (p) ∼= E∞∗,∗(p) ∼= K.

Consequenctly, regarding H∗(ΩM;K) as chain algebra, with the
trivial di�erential and K as a trivial chain module over it, we
interpret the En

∗,∗ term of the spectral sequence as an acyclic, free
resolution over K over H∗(ΩM;K). First remind the Serre spectral
sequence as follows :
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Serre spectral sequence

The Serre Spectral Sequence expresses, in the language of
homological algebra the singular (co)homology of the total space X
of a (Serre) �bration in terms of the (co)homology of the base
space B and the �ber F .
• Cohomology spectral sequence

Let f : X → B be a Serre �bration of topological spaces, and let F
be the �ber. The Serre cohomology spectral sequence is the
following :

E 2
p,q = Hp(B,Hq(F ))⇒ Hp+q(X ).

This spectral sequence can be derived from an exact couple built
out of the long exact sequences of the cohomology of the pair
(Xp,Xp−1) where Xp is the restriction of the �bration over the
p−skeleton of B.
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Serre spectral sequence

There is There is a multiplicative structure

Ep,q
r × E s,t

r → Ep+s,q+t
r ,

coinciding on the E2−term with (−1)qs times the cup product, and
with respect to which the di�erentials dr are (graded) derivations
inducing the product on the Er+1−page from the one on the
Er−page. And we have Er+1 = H∗(Er ).
• Homology spectral sequence Similarly to the cohomology
spectral sequence, there is one for homology :

E 2
p,q = Hp(B,Hq(F ))⇒ Hp+q(X ).

• Main Application to Algebraic Topology : Cohomology via

Fibrations

We begin with a (somewhat) concrete example. Consider a �bration

F → X
f→ B
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Serre spectral sequence

and set

Ep,q
2 :=

{
Hp(B,Hq(F )) if p, q ≥ 0

0 otherwise

In the case where B is a CW−complex, setting X p := f −1(Bp), we
get a �ltration

X0 ⊂ X1 ⊂ ...Xi ⊂ ... ⊂ X

We set Cq := Hq(X ) and Cp,q := Hq(Xp). The inclusions

Xi−1 ↪→ Xi ↪→ X

induce maps
H∗(X )→ H∗(Xi )→ H∗(Xi−1)

and thus, setting Fi := ker(H∗(X )→ H∗(Xi )), a �ltration
0 ⊂ F1(X ) ⊂ F2(X ) ⊂ ... ⊂ Fi (X ) ⊂ ... ⊂ H∗(X )
The relative cohomology Ep,q

1 is the relative Cohomology
Ep,q
1 = Hp(Xq,Xq−1) and the cohomology of this gives us the term

2 of the spectral sequence given above.
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Serre spectral sequence

◦ A Basic Pathspace Fibration

Consider the path space �bration

ΩSn+1 ↪→ PSn+1 → Sn+1

This is an example of a case where we can study the homology of a
�bration by using the E∞ page (the homology of the total space)
to control what can happen on the E 2 page. So recall that

E 2
p,q = Hp(Sn+1,Hq(ΩSn+1)).

Hicham YAMOUL Serre Spectral Sequence of loop space of F (M, k)



Introduction
Serre Spectral Sequence

The Serre spectral sequence of the path �bration
References

Serre spectral sequence of path �bration

We consider the cases where M = Rn+1 or Sn+1 and we �x a set
Qr of r di�erent points of M, Qr := {q1, ..., qr} where 1 ≤ r ≤ k .
Let ΩM the based loop space and LM the free loop space.
With these notations, put Fk−r ,r := F (Rn+1 − Qk−r , r),
and consider the path �bration pk−r ,r : PFk−r ,r → Fk−r ,r that
sends a based Moore path (α, r) to its endpoint α(r).
In the case where n > 1, we have the following theorem

Theorem
The Serre spectral sequence {E t

∗,∗(pk−r ,r ), d t} has the following
properties :

i) E 2
∗,∗(pk−r ,r ) ∼= H∗(Fk−r ,r )⊗ H∗(ΩFk−r ,r ),

ii) E 2
∗,∗(pk−r ,r ) ∼= E r

∗,∗(pk−r ,r ) for 2 ≤ r ≤ n, and
iii) En+1

∗,∗ (pk−r ,r ) ∼= E∞∗,∗(pk−r ,r ) = Z,
where homology is with integral coe�cients.
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Serre spectral sequence of path �bration

Corollary

The Serre spectral sequence of LFk−r ,r → Fk−r ,r is such that

E t
∗,∗
∼= E∞∗,∗, for t ≥ (n + 1).

The case of F (Sn+1, k + 1), (n + 1) odd

In the case of con�guration space of an odd sphere, we have the
following

Theorem
The Serre spectral sequence {E r

∗,∗(pE ), d r (pE )} has the following
properties :

i) E 2
∗,∗(pE ) ∼= E r

∗,∗(pE ), for 2 ≤ r ≤ n;
ii) the projection p ◦ pE : P(E )→ B, induces an isomorphism

E r
∗,∗(pE ) ∼= E r

∗,∗(pB) of DG-module, for r ≥ n + 1; and,
iii) E r

∗,∗(pE ) ∼= E∞∗,∗
∼= K, for r > n + 1.
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Serre spectral sequence of path �bration

The case of F (Sn+1, k + 1), (n + 1) even

Theorem
The Serre rational homology spectral sequence of pE has the

following properties :

i) E r
∗,∗(pE ) ∼= H∗(E )⊗ H∗(ΩE ), for 2 ≤ r ≤ n;

ii) the map p : E → B, induces an isomorphism

E r
∗,∗(p) : E r

∗,∗(pE )→ E r
∗,∗(pB), for r ≥ n + 1; and, consequently,

iii) E r
∗,∗(pE ) ∼= Z2, for r > n + 1.

Corollary

The natural injection LF (Rn+1, k)→ LF (Sn+1, k + 1) induces an

isomorphism

H∗(LF (Rn+1, k))⊗ H∗(LSn+1)→ H∗(LF (Sn+1, k + 1)).
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Serre spectral sequence of path �bration

In the case of rational homology, a similar result holds as follows :

Theorem
The Serre rational homology spectral sequence of pE has the

following properties :

i) E r
∗,∗(pE ) ∼= H∗(E )⊗ H∗(ΩE ), for 2 ≤ r ≤ n;

ii) the map p : E → B, induces an isomorphism

E r
∗,∗(p) : E r

∗,∗(pE )→ E r
∗,∗(pB) of spectral sequence for r ≥ n + 1;

and, consequently,

iii) E r
∗,∗(pE ) ∼= Q, for r > n + 1.
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