The Serre Spectral Sequences for Loop Space of Configuration Spaces

Hicham YAMOUL

Department of Mathematics Faculty Of Science Ain Chock Rational Homotopy Theory Moroccan Research Group

Talk UIR, March 07, 2015

Introduction

Serre Spectral Sequence

The Serre spectral sequence of the path fibration

References

・ロト ・ 同ト ・ ヨト ・ ヨト

In this talk, we give a brief survey on the Serre spectral sequence $\{E_{*,*}^r(p), d^r\}$ over $\mathbb{K} = \mathbb{Z}$, and \mathbb{Z}_2 , of the path space fibration

 $p:\mathcal{P}(M)\to M,$

with $M = F(\mathbb{R}^{n+1}, k)$ or $F(S^{n+1}, k+1)$. Here the paths are based at an appropriate basepoint.

In the case where $M = \mathbb{R}^{n+1}$, the spectral sequence stabilizes at the n^{th} term, in the sense that

 $E_{*,*}^{n+1}(p)\cong E_{*,*}^{\infty}(p)\cong \mathbb{K}.$

Consequenctly, regarding $H_*(\Omega M; \mathbb{K})$ as chain algebra, with the trivial differential and \mathbb{K} as a trivial chain module over it, we interpret the $E_{*,*}^n$ term of the spectral sequence as an acyclic, free resolution over \mathbb{K} over $H_*(\Omega M; \mathbb{K})$. First remind the Serre spectral sequence as follows :

Serre spectral sequence

The Serre Spectral Sequence expresses, in the language of homological algebra the singular (co)homology of the total space X of a (Serre) fibration in terms of the (co)homology of the base space B and the fiber F.

• Cohomology spectral sequence

Let $f: X \to B$ be a Serre fibration of topological spaces, and let F be the fiber. The Serre cohomology spectral sequence is the following :

$$E^2_{p,q} = H^p(B, H^q(F)) \Rightarrow H^{p+q}(X).$$

This spectral sequence can be derived from an exact couple built out of the long exact sequences of the cohomology of the pair (X_p, X_{p-1}) where X_p is the restriction of the fibration over the p-skeleton of B.

Serre spectral sequence

There is There is a multiplicative structure

$$E_r^{p,q} \times E_r^{s,t} \to E_r^{p+s,q+t},$$

coinciding on the E_2 -term with $(-1)^{qs}$ times the cup product, and with respect to which the differentials d_r are (graded) derivations inducing the product on the E_{r+1} -page from the one on the E_r -page. And we have $E_{r+1} = H^*(E_r)$.

• Homology spectral sequence Similarly to the cohomology spectral sequence, there is one for homology :

$$E^2_{p,q} = H_p(B, H_q(F)) \Rightarrow H_{p+q}(X).$$

• Main Application to Algebraic Topology : Cohomology via Fibrations

We begin with a (somewhat) concrete example. Consider a fibration

Serre spectral sequence

and set

$$E_2^{p,q} := \begin{cases} H^p(B, H^q(F)) & \text{if } p, q \ge 0\\ 0 & \text{otherwise} \end{cases}$$

In the case where B is a CW-complex, setting $X^p := f^{-1}(B^p)$, we get a filtration

$$X_0 \subset X_1 \subset ... X_i \subset ... \subset X$$

We set $C_q := H^q(X)$ and $C_{p,q} := H^q(X_p)$. The inclusions

$$X_{i-1} \hookrightarrow X_i \hookrightarrow X$$

induce maps

$$H^*(X) \rightarrow H^*(X_i) \rightarrow H^*(X_{i-1})$$

and thus, setting $F_i := \ker(H^*(X) \to H^*(X_i))$, a filtration $0 \subset F_1(X) \subset F_2(X) \subset ... \subset F_i(X) \subset ... \subset H^*(X)$ The relative cohomology $E_1^{p,q}$ is the relative Cohomology Highm YAMOUL Serie Spectral Sequence of loop space of F(M,k)

Serre spectral sequence

• A Basic Pathspace Fibration Consider the path space fibration

$$\Omega \mathbb{S}^{n+1} \hookrightarrow \mathcal{P} \mathbb{S}^{n+1} \to \mathbb{S}^{n+1}$$

This is an example of a case where we can study the homology of a fibration by using the E^{∞} page (the homology of the total space) to control what can happen on the E^2 page. So recall that

$$\mathsf{E}_{\rho,q}^2 = \mathsf{H}_{\rho}(S^{n+1}, \mathsf{H}_q(\Omega \mathbb{S}^{n+1})).$$

(D) (A) (A) (A)

Serre spectral sequence of path fibration

We consider the cases where $M = \mathbb{R}^{n+1}$ or \mathbb{S}^{n+1} and we fix a set Q_r of r different points of M, $Q_r := \{q_1, ..., q_r\}$ where $1 \le r \le k$. Let ΩM the based loop space and $\mathcal{L}M$ the free loop space. With these notations, put $F_{k-r,r} := F(\mathbb{R}^{n+1} - Q^{k-r}, r)$, and consider the path fibration $p_{k-r,r} : \mathcal{P}F_{k-r,r} \to F_{k-r,r}$ that sends a based Moore path (α, r) to its endpoint $\alpha(r)$. In the case where n > 1, we have the following theorem

Theorem

The Serre spectral sequence $\{E_{*,*}^t(p_{k-r,r}), d^t\}$ has the following properties :

i)
$$E_{*,*}^2(p_{k-r,r}) \cong H_*(F_{k-r,r}) \otimes H_*(\Omega F_{k-r,r}),$$

ii) $E_{*,*}^2(p_{k-r,r}) \cong E_{*,*}^r(p_{k-r,r})$ for $2 \le r \le n$, and
iii) $E_{*,*}^{n+1}(p_{k-r,r}) \cong E_{*,*}^{\infty}(p_{k-r,r}) = \mathbb{Z},$
where homology is with integral coefficients.

Serre spectral sequence of path fibration

Corollary

The Serre spectral sequence of $\mathcal{L}F_{k-r,r} \to F_{k-r,r}$ is such that $E_{*,*}^t \cong E_{*,*}^\infty$, for $t \ge (n+1)$.

The case of
$$F(\mathbb{S}^{n+1}, k+1)$$
, $(n+1)$ odd

In the case of configuration space of an odd sphere, we have the following

Theorem

The Serre spectral sequence $\{E_{*,*}^r(p_E), d^r(p_E)\}\$ has the following properties :

i)
$$E_{*,*}^2(p_E) \cong E_{*,*}^r(p_E)$$
, for $2 \le r \le n$;
ii) the projection $p \circ p_E : \mathcal{P}(E) \to B$, induces an isomorphism
 $E_{*,*}^r(p_E) \cong E_{*,*}^r(p_B)$ of DG-module, for $r \ge n+1$; and,
iii) $E_{*,*}^r(p_E) \cong E_{*,*}^\infty \cong \mathbb{K}$, for $r > n+1$.

Serre spectral sequence of path fibration

The case of $F(\mathbb{S}^{n+1}, k+1), (n+1)$ even

Theorem

The Serre rational homology spectral sequence of p_E has the following properties :

i)
$$E_{*,*}^r(p_E) \cong H_*(E) \otimes H_*(\Omega E)$$
, for $2 \le r \le n$;
ii) the map $p: E \to B$, induces an isomorphism
 $E_{*,*}^r(p): E_{*,*}^r(p_E) \to E_{*,*}^r(p_B)$, for $r \ge n+1$; and, consequently,
iii) $E_{*,*}^r(p_E) \cong \mathbb{Z}_2$, for $r > n+1$.

Corollary

The natural injection $\mathcal{LF}(\mathbb{R}^{n+1},k) \to \mathcal{LF}(\mathbb{S}^{n+1},k+1)$ induces an isomorphism

$$H_*(\mathcal{LF}(\mathbb{R}^{n+1},k))\otimes H_*(\mathcal{LS}^{n+1}) \to H_*(\mathcal{LF}(\mathbb{S}^{n+1},k+1)).$$

Serre spectral sequence of path fibration

In the case of rational homology, a similar result holds as follows :

Theorem

The Serre rational homology spectral sequence of p_E has the following properties :

i) $E_{*,*}^r(p_E) \cong H_*(E) \otimes H_*(\Omega E)$, for $2 \le r \le n$; ii) the map $p: E \to B$, induces an isomorphism $E_{*,*}^r(p): E_{*,*}^r(p_E) \to E_{*,*}^r(p_B)$ of spectral sequence for $r \ge n+1$; and, consequently, iii) $E_{*,*}^r(p_E) \cong \mathbb{Q}$, for r > n+1.

References

- E.Fadell and S.Husseini, Geometry and Topology of Configuration Spaces.-Springer Monographs in Mathematics. 2001
- Félix, Yves, Halperin, Stephen, and Thomas, Jean-Claude (2001). Rational Homotopy Theory, Volume 205 of Graduate Texts in Mathematics. Springer-Verlag, New York.
- Allen Hatcher, The Serre spectral sequence, http://www.math.cornell.edu/ hatcher/SSAT/SSATpage.html
- McCleary, John (2001). A User's Guide to Spectral Sequences. Cambridge University Press, second edition.