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0.1 Introduction

A minimal model is a particularly tractable kind of commutative differential graded alge-
bra (cdga) that can be associated to any nice cdga or to any nice space. The word minimal
emphasizes that, at least in many cases of interest, the model is calculable. The amazing fea-
ture of minimal models of spaces is their ability to algebraically encode all rational homotopy
information about a space. This is, of course, why minimal models are important.

Among the cdga’s, some have more interesting properties than others. This is the case for
the so-called Sullivan cdga’s and minimal cdga’s.|3]

This lecture is based essentially on the section 12 of [2], the first chapters of [3]and the part
concerned to Sullivan models, Elliptic Spaces of [1], we denote then by C*(X,K) the cochain
algebra of normalized singular cochains on a topological space X. This algebra is almost never
commutative although it is homotopy commutative.

We introduce a naturally defined commutative cochain algebra Ap;(X;K), and natural
cochain algebra quasi-isomorphisms

C*(X,K) S D(X) & Ap(X:K).

where D(X) is a third natural cochain algebra. The construction of the functor Ap(X;K), due
to Sullivan, is inspired from C* differential forms and the functor X ~» Ap.(X;K) equivalently

Apy, : topological spaces ~» commutative cochain algebras

18 contravariant....

0.2 Sullivan models

Definition 0.2.1. A Sullivan algebra is a commutative cochain algebra of the form (AV,d),
where
o V ={VP} > and, as usual, AV denotes the free graded commutative algebra on V;
o V = pc, V(k), where V(0) C V(1) C ... is an increasing sequence of graded subspaces
such that
d=04inV(0) andd:V(k) > AV(k—1),k > 1.

The second condition is called the nilpotence condition on d. i.e, d preserves each AV (k),
and there exist graded subspaces Vi, C V/(k) such that AV(k) = AV(k — 1) ® AV}, with

The Sullivan algebra is completely described by the vector space V' and the linear operator,
d. Moreover, if a graded algebra A is connected, i.e. H°(A) = K, there always exists a quasi-
isomorphism from a Sullivan algebra to (A, d). Another simple definition is the following

Definition 0.2.2. A Sullivan cdga is a cdga (AV,d) whose underlying algebra is free commu-
tative, with V = {V*}i>1 and such that V admits a basis x; indexed by a well-ordered set such

0.2.1 Topological spaces and the Ap; functor
Let A" be the standard simplex in R**!

n

A" = {(to, ...t,) ER™|Vi,0<i<n, Y t; =1}

1=0
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and let 0 denote the standard boundary operator. Consider the restriction to A™ of all the
differential forms of R"*! of type

> Giadty ANt

where ¢;, ;, are polynomials in the variables %y, ..., ,, over the rational numbers.
Denote all such forms by A*(A"); note that this algebra contains the two relations

1=0

Now let K be a simplicial complex and let 0 € K a simplex. Define

App(K) == {(ws)oek|(w,) € A*(0) and w,|, = w, if 7 C do}.

Note that Ap.(K) is a differential graded commutative algebra. If L L is another simplicial
complex and f : K — L is a simplicial map, then there exists a dga morphism App(f) :
APL<L) — APL(K) given by

APL(f)(WU) - wf(a)'

Suppose that X is a topological space homeomorphic to a simplicial complex K; thus K
is a simplicial complex whose spatial realization |K| is homeomorphic to X. Then the functor
Apy, associates to every such topological space X a differential graded commutative cochains
algebra Ap;(X) and to every continuous map f: X — Y, Y = |L| for some simplicial complex
L, a dga morphism Apr(f) : Apr(Y) — Apr(X). Notice that it is a contravariant functor.

Remark 1. Any continuous function f : X — X induces a continuous map F : K — K
using the simplicial approzimation_theorem, we can find a simplicial representative F' of F.

This means that, for every n € N, F' sends n-simplices to n-simplices and that F is homotopic
to F.

Definition 0.2.3. Let X be a topological space homeomorphic to a simplicial complex. Then
the minimal model of X is defined to be the minimal model of the dga Apr(X).

Now, coming back to Sullivan model

Definition 0.2.4. 1. A Sullivan model for a commutative cochain algebra (A,d) is a quasi-
1somorphism
m: (AV,d) — (A,d)

from a Sullivan algebra (AV,d).
2. If X is a path connected topological space then a Sullivan model for App(X),

m: (AV,d) = ApL(X),

1s called a Sullivan model forX.

3. A Sullivan algebra (or model), (AV,d) is called minimal if we can choose a basis {v;} for
V' whose enumeration agrees with degree so that the differential is decomposable for each v; :
dv; € AV_;, where V_; is the space spanned by the generators vy, ..., v;_1.

Fquivalently, o Sullivan algebra (or model), (AV,d) is called minimal if

Imdc ATV.ATV

Definition 0.2.5. A (Sullivan) minimal cdga is a Sullivan cdga (AV,d) satisfying the additional
property that dV C A=2V
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If (AV,d) is a minimal cdga and a € (AV)* is a cocycle and a decomposable element, then
we construct a new minimal cdga by introducing a new generator x in degree k£ — 1 and putting
dxr = a. This gives the minimal cdga (A(V @ Kz, d). By iterating this process, we can easily
construct a lot of minimal cdga’s. For instance, (A(z,y, z),d) with |z| = |y| = 2, |z] = 3,dz =
dy = 0 and dz = 2% — y? is automatically a Sullivan minimal model.

If (A,d) is connected algebra then, it has always a minimal Sullivan model, and this is
uniquely determined up to isomorphism.

Sullivan models for topological spaces X are, among all the commutative models, the ones
that provide the key to unlocking the rational homotopy properties of X. For example, if (AV, d)
is a Sullivan model for X then, as with any commutative model,

H*(AV,d) = H*(X;K).
However, if (AV,d) is minimal there is also a natural isomorphism
V S Homg(m, (X): K),

provided that X is simply connected and has rational homology of finite type.

Proposition 0.2.1. If a simply connected topological spaces X and Y have the same rational
homotopy type, then Apr(X) and Apr(Y') are weakly equivalent.

The minimal models are unique up to isomorphism, then Ap;(X) and Apr(Y) have iso-
morphic minimal models : the isomorphism class of a minimal model of X is an invariant of
its rational homotpy type.

We can summarize two interesting correspondences as follows :

o)

{Rational homotopy types} — {Isomorphism classes of minimal Sullivan algebras overQ}

Sullivan models also provide good descriptions of continuous maps, and of the relatin of
homotopy. Indeed, let A(t,dt) be the free commutative graded algebra on the basis {t, dt} with
degt = 0, degdt = 1, and let d be the differential sending ¢ — dt. Define augmentations

€0,E1 : A(t,dt) — K by €O(t> = 0,81(15) =1

Definition 0.2.6. Two morphisms o, p1 = (AV,d) — (A,d) from a Sullivan algebra to an
arbitrary comutative cochain algebra are homotopic if there is a morphism

O (AV,d) — (A,d) ® (A(t, dt), d)

such that (id.e;)® = ¢;, i = 0,1. Here ® is called a homotopy from @q to @1, and we write
¥o ~ L1-

Suppose mx : (AV,d) — App(X) and my : (AW,d) — Apr(Y) are Sullivan models defined
over Q, and that f : X — Y is a continuous map. Then it turns out that there is a unique
homotopy class of morphism ¢ : (AW, d) — (AV,d) such that mxyp = Apr(f)my : ¢ is called
a Sullivan representative for f. Furthermore, the homotopy class of ¢ depends only on the
homotopy class of f. It is shown that f — ¢ define a bijection and there is the following
correspondence

o)

{homotopy class of mapsX — Y} = {homotopy classes of morphisms(AW,d) — (AV,d)}
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0.2.2 Sullivan algebras and models : constructions and examples

Firstly, we recall some notations and basic facts associated with free commutative graded
algebras AV;

e AV = symmetric algebra(V*")® exterior algebra(V°). The subalgebras A(V=P), A(V>9), ...
are denored AVSP AV>9 ..

o If {v;} is a basis for V' we write A({v;}) or A(vy, ...) for AV.

e AV is the linear span of elements of the form vy A ... A vy, v; € V. Elements in AV have
wordlength ¢.

o AV =@, AV and we write A=V = P

o If V=0,V then AV =), AV,.

e Any linear map of degree zero from V to a commutative graded algebra A extends to a
unique graded algebra morphism AV — A.

e Any linear map of degree k (k € Z) from V' to AV extends to a unique derivation of degree
kin AV.

In particular the differential in a Sulivan algebra (AV,d) decomposes uniquely as the sum
d = dy+ dy + do + ... of derivations d; raising the wordlength by ¢ The derivation d; is called
the linear part of d.

AV and ATV = A2V,

1>q

Proposition 0.2.2 (The Existence of Sullivan Models). Any commutative cochain algebra
(A, d) satisfying H°(A) = K has a Sullivan model

m: (AV,d) > (A, d)

Démonstration. By construction, since V' is the direct sum of graded subspaces Vi, k > 0 with
d=0inVyand d:V, — A(@f;ol Vi). Choose mg : (AVp,0) — (A, d) so that

H(my) : Vo = HT(A).

Since H°(A) =K, H(my) is surjective.

Suppose mg has been extended to my, : (A(@}_,Vi),d) — (A,d). Let z, be cocycles in
A(BF_, Vi) such that [2,] is a basis for ker H(my). Let Viy1 be a graded space with basis {v,}
in 1-1 correspondence with the z,, and with degv, = degz, — 1. Extend d to a derivation in
A(@fzo V;) by setting dv, = z,. Since d has odd degree, d* is a derivation. Since d*v, = dz, = 0,
d* = 0.

Since H(my)[za] =0, myzo = day, as € A. Extend my, to a graded algebra morphism

Mes1 : A(@fiol Vi) — A by setting mpi1v4 = ao. Then mydv, = dmyi1v,, and so
Myy1d = dmy;.

This completes the construction of m : (AV,d) — (A, d) with V = @;2, V; and myy, = my,.
Since mzy, = mo, and H(myg) is surjective, H(m) is surjective as well. If H(m)[z] = 0 then,
since z is necessary in some A(@F Vi, H(my)[z] = 0. By construction, z is a boundary in
@fiol Vi. Thus H(m) is an isomorphism.

We show next by induction on k£ that V} is concentrated in degree > 1. This is certainly
true for k = 0, because Vo = HT(A). Assume it true for V;, i < k. Any element in A(@fzo Vi)
of degree 1 then has the form v = vy + ... + v, v; € V1.

Thus if dv = 0 then dv;, € d(A @f;ol Vi). By construction, this implies v;, = 0. Repeating
this argument we find v = vy and H (my)[ve] = H(mo)[vo] # 0, unless vy = 0. Thus ker H (my,)
vanishes in degree 1; i.e., it is concentrated in degrees > 2. It follows that V}, is concentrated
in degrees > 1.

Finally, the nilpotence condition on d is built into the construction. O
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Example 1. The spheres, S*.

The fundamental class [S*] € Hy(S*;Z). that determines a unique class w € H*(Apr(S*))
such that (w,[S*]) = 1, and {1,w} is a basis for H(Ap(S¥)). Let ® be a representing cocycle
for w.

We can distinguish two cases;

If k is odd, then a minimal Sullivan model for S* is given by

m: (A(e),0) = Ap(S*), deg e = k,me = ®.

Indeed, since k is odd, 1 and e are a basis for the exterior algebra A(e).
If k is even, consider also

m: (A(e),0) > App(S¥), deg e = k,me = ®.

But now, because deg e is even, A(e) has as basis {1,e,¢? €3,...} and this morphism is not a
quasi-isomorphism. However, ®* is certaint a coboundary, written as ®* = dy and extend m to

m: (A(e,e'),d) — Apr(S¥)

by setting dege’ = 2k — 1,de’ = e® and me’ = . The elements 1,e represent a basis of
H(A(e,e'),d). Thus this is a minimal model for S*. Finally, observe that quasi-isomorphisms
(Ae,0) — (H*(S*),0), k odd and

(Ale,e),d) — (H*(S%),0), k even are given by e — w, € + 0.

Example 2. Complex projective spaces CP" We know that H*(CP") = Aa/(a"'), dega =2
We choose z € A%, (CP") representing the generator of the cohomology algebra. As above,
we choose Q) € AZH(CP™) such that d) = 2", We define

¢ : (Aa,u),da=0,du=a""") — Apy(CP")
a2
u €

Again one easily checks that the map

% : (Ala,u)) = Apr(CP")
a—a
ur>0

is a quasi-isomorphism. Therefore m,(CP") ® Q = Qa* & Qu*.

Example 3. Products of topological spaces

Suppose mx : (AV,d) — Apr(X) and my : (AW,d) — App(Y) are Sullivan models for
path connected topological spaces X and Y. Assume further that the rational homology of one
of these spaces has finite type. Let p* : X xY — X and p¥ : X x Y — Y be the projections.
Then Apr(p™).Apr(pY) : Apr(X)® Apr(Y) — Apr(X xY) is a quasi-isomorphism of cochain
algebras.

In fact, Apr(pX).ApL(pY) is clearly morphism of graded vector spaces commuting with the
differentials. It is a morphism of algebras because App (X XY') is commutative. To see that it is
a quasi-isomorphism we use Corollary 10.10 of [2] to identify the induced map of cohomology
with the map
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H*(X:K)® H*(YV;K) —» H* (X x YV:K)

given by a @ B — H*(pX)a U H*(p¥)B. that is an isomorphism (Prop 5.3 (ii)[2]).
Since Apr(p™).Apr(pY) is a quasi-isomorphism so is

mx.my : (AV,d) @ (AW,d) = Apr(X x Y),

where (mx.my)(a @ b) = Apr(p*)mxa.Apr(p¥)myb. This exhibits (AV,d) ® (AW,d) as a
Sullivan model for X xY.

Example 4. H-spaces have minimal Sullivan models of the form (AV,0).
An H-space is a based topological space (X, ) together with a continuous map p: X x X —
X such that the self maps x — p(x,*) and v — u(*,x) of X are homotopic to the identity

Theorem 0.2.1 (Hopf). If X is a path connected H-space such that H.(X;K) has a finite
type, H*(X;K) is a free commutative graded algebra.

Consider the map ¢ : AV = H*(X;K)

and let w € Apr(X) be a cocycle representing the cohomology classe v. The correspondence
v — w defines a linear map V. — App(X) wich extends to a unique morphism m : AV —
App(X). Since ¢ is an isomorphism it follows that m is a quasi-isomorphism :

m: (AV,0) > ApL(X)

15 a minimal Sullivan model for the H-space X.

Example 5. A cochain algebra (AV,d) that is not a Sullivan algebra. Consider the cochain
algebra (A,d) = (A(v1,v9,v3),d), dequ; = 1, with dvy = vovs,dve = v3v1, and dvs = vivs.
Here (A,d) is not a Sullivan algebra. (If it were, it would have to have a cocycle of degree 1,
w = v1vav3 represent a basis for H(A), and so it has a minimal model m : (A(w),0) = (AV, d),
degv = 3, m(w) = v1v9v3.)

Example 6. The minimal Sullivan algebra (A(a,b, x,y, z),d), where
da=db=0,dr =a* dy = ab,dz = b?

and dega = degb = 2 and degx = degy = degz = 3.

Here, the cohomology algebra H has a basis 1, a = [a], B = [b], v = [ay — bzx], § = [by — az],
e = [aby — b%x].

Note that ad = & = B, and that all other products of basis elements in H™ are zero.

To construct a minimal model for the cochain algebra (H,0), we consider m : (AV,d) 5
(H,0), beginning with

V2 = (vy,ve) with dvy, = dvy = 0, mvy = a,mvy = B and V3 = (uy,uy, uz) with du; =
v2, duy = 0109, duz = v3 and mu; = muy = muz = 0.

Note that necessarily m(viug — vouy) = 0 = m(voug — viug).

Thus we need to add V* = (x1,x9) with do, = viug — vouy, dry = vouy — viuz, and mx; =
mxe = 0,

and V* = (y1, yo) with dy; = dy, = 0 and my; = vy, mys = 6.

The process turns out (but we can not yet prove this) to continue without end. Observe that
this provides two distinct minimal Sullivan algebras with the same cohomology algebra.
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0.3 Elliptic Spaces

This section is destined to the study of Sullivan minimal models in the case of the finiteness
of cohomological and homotopical dimension, that is ellipticity, let X be a 1-connected CW-
complex with finitely many cells in each dimension. It is well-known that, for each ¢, its i-th
homotopy groups m;(X) is a finitely generated abelian groups.

The question that one can state is how do the size of the space X influences the size of
7«(X) ? The rough answer is :

If X is small, then either 7, (X)/(torsion) is very small or very large.

0.3.1 Finiteness of the formal dimension

We assume in the following that all the minimal models (AV,d) satisfy V! = 0 and that V
has finite type, i.e. the topological space X is 1-connected and H*(X;Q) is finite dimensional
for every 1.

Definition 0.3.1. The formal dimension fd(X) of a commutative differential graded algebra
(AV,d) is equal to the mazimum of all k such that H*(AV) # 0. If no such k exists we write
fd(X) = oc.

To begin with, we describe the important process which consists in killing variables in
Sullivan models.

Suppose we are given a minimal Sullivan model (AV,d); there always exists a v € V such
that dv = 0. Let us choose a Q-vector space such that V' decomposes as V = Qu & W with
dv = 0, and define (AW, d) = Av @ AW/ (v).

The algebraic structure is given by :

AV =A@AW = (Quad Atv) @ AW = AW & Ao @ AW,

where the second summand is precisely the ideal v.AV = (v), the ideal generated by v in
AV. Because dv = 0, vAV is d-stable (i.e. d(v.AV) C v.d(AV)). Then AV/v.AV is a CDA;
as a graded algebra it is isomorphic to AW. Using this isomorphism, we endow AW with a
differential ; let us denote this differential by d. We say that (AW, d) is the minimal Sullivan
model obtained by killing the variable v.

Proposition 0.3.1. Suppose that AV decomposes as Av @ AW.
i) If degu = 2n and fd(AV) = k < oo, then fd(AW) =k + 2n — 1.
ii) If degy = 2n + 1 and fd(AV') = k < oo, then

JAAW) =k — (2n+1) or fd(AW) = co.

0.3.2 Elliptic Models

Definition 0.3.2. An elliptic Sullivan minimal model is a minimal model (AV,d) such that
dimV < oo and dim H(AV) < oc.

For such models we can choose a finite basis vy, ..., v, such that dv; is a polynomial in the
variables vy, ..., v;_1.
For each i we have the quotient model

(A(vs, ..., v.),d) = (AV,d)/ (v, ..., vi_1).
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Proposition 0.3.2. Suppose (AV,d), is elliptic. Then
i) For each i, (A(vy, ..., v,) is elliptic.
i) Jd(AV) = Z\vi|0dd|vi| - Z|vi|€U6n(|Ui| —1).
Démonstration. Let W = (v, ...,v,.). If |v;] is even, then by Proposition 0.. AW is elliptic and
fd(AW) = fd(AV) + |vy| — 1.
If |v1] is odd, let us consider the derivation 6 : AW — AW and its "linear part"
01 : AW — ANTW.

Since 6; decreases the degree, there exists an N such that one actually has (Hl‘W)N = 0,
(N < r—1). By Proposition 0.., this implies H(AW') < oo; i.e. AW is elliptic and by Proposition
0.. fd(AW) = fd(AV) — |vq].

Repeating the process we get the announced formula. O]

Remark 2. Since (Av,,0) is elliptic, |v,.| must be odd.

We now proceed to a characterization of elliptic models. Let P be the span of the odd gene-
rators xy,Ta, ..., Tp with r; = vo;i1. Let Q) be the span of the even generators yi,ys, ..., Yp with
y; = vg;. We identify

AV = AP®AQ
= Klyi,y2, .., ut] ® E(x1, 22, ..., k)
= K[y17y27 ...,yl] & AV X P.

In particular, dy; € AV ® P and we can write
dz; = fi(y) + .
where f; is a polynomial and Q; € AV ® P.
Define n =>_ |v;| = > (|vi| = 1).
and finally, we give the following theorem

Theorem 0.3.1. The following conditions are equivalent for a CDA (AV,d) with dimV < oo :
i) dim H(AV) < o0; i.e.(AV,d) is elliptic.
i) Klyr, v, -, ui)/(f1, -, fr) is finite dimensional.
i) H"(AV) and H'(AV) =0, for n < i < 3n.

Démonstration. See [1] O

Example 7. Let A(x,y, z, a,u, v) be the free graded commutative algebra generated by x,y, z, a, u,v
i respective degrees 3,3,3,8,13,16 Define a differential by

dr = dy=dz=0

da = xyz

du = xya

dv = a®+ 2zu.
Define a new differential § such that Sz = 0y = 6z = da = du = 0, v = a®. We obtain

H(AV,0) = A(z,y,2,u)® H(A(a,v),dv = a?)
= A(z,y,2,u) ® Aa/(a?),
which is of dimension 32 < co. Thus H(AV,d) is finite dimensional and
fd(AV,d) =3+3+3 -7+ 13+ 15 = 30.

Example 8. A(ay, 73, us, by, vs, wr;da = dv = 0, du = a*,db = ax,dv = ab—uz, dw = V* —vx).
Here subscripts denote degrees. The differential 6 is given by da = 6b = dx = 0,0u =
a®,6v = ab, 0w = b?. Thus in H(AV,8) we have [a]* = [b]*> = 0 and so (AV,d) is elliptic.
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0.3.3 Some equalities and inequalities

Suppose (AV,d) is elliptic and generated by odd-degree generatorszy, ..., 2y, and even-degree
generators vy, ..., y;. (we preserve all notations of the previous paragraph). Set

lyi| = 2a;,|z;] = 2b; — 1, and n = fd(AV, d).

Recall from Proposition 0.2.2 ii) :
Fact one. n = Z;Zl(ij —1)=3F (20, - 1).
Next write dz; = f(y1,...,y1) + AV ® P and recall that

dimK[yl,yg, ...,’yl}/(fh -~-7fk) < 00, degfj = 2bj

This means k > [i.e. :
Fact two.
The number of odd generators> the number of even generators. Now we renumber the
indices such that
a; > ...>aq and by > ... > by,

Define a map from K[y, y2, ..., ui|/(f1, -, fr) to

K[yhy?, ---yy’r}/(fl(yhy% "'ay’l‘voa "'70)7 '--7fk(?/1,y2, "'7y7‘707 cey 0))

by y; — 0,7 > r.

At least 7 of the f;(y1,y2,...,4r,0,...,0) are non-zero (because the last quotient algebra is
finite, there are more equations than variables); say f;,, ..., f;, out of fi,..., fg. Thus j, > r and
SO

20, = degf, > degf; = degy" ..y, = Zmﬂaz > 4a,
and
b, > 2a,,1 <r <1

Now facts one and two combined yield

That is
Fact three.

n>y; degézlyi
Finally, we obtain

k k l
n = ijJrZ(bj—l —> (24— 1)

=1

k
> Zb +Zb—2al zz

by inequality (*).
Fact four. 2n — 1> " degh_, ;.
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0.3.4 Euler-Poincaré characteristic

We recall the Euler-Poincaré characteristic y;, of a finite dimensional vector space by x =
ST (=1) dim M? = dim M®*" — dim M°%. If M is equipped with a differential, d, then y,; =
XH(M,d)-

Proposition 0.3.3. Let x be the Euler-Poincaré characteristic of the cohomology of an elliptic
Sullivan algebra (AV,d). Then

x > 0 and dim V°% — dim Ve > 0.

Moreover, the following conditions are equivalent :

(i) x > 0.

(i) H(AV,d) is concentrated in even degrees.

(11) H(AV,d) is the quotient Ay, ..., y,)/ (w1, ..., uq) of a polynomial algebra in variables
(y;) of even degree by an ideal generated by a regular sequence (u;).

(iv)) (AV,d) is isomorphic to a pure Sullivan algebra (AQ ® AP,d) in which Q = Q°",
P = P° qnd d maps a basis of P to a reqular sequence in AQ.

(v) dim V4 — dim Veven = .

Démonstration. See |2]. O

0.3.5 Topological interpretation

Definition 0.3.3. A simply connected topological space X is rationally elliptic if
dim H*(X;Q) < oo and dim 7, (X) ® Q < oc.

Let us call n := max{i; H'(X;Q) # 0} the formal dimension of X.

We recall that the Sullivan minimal model of any rational I-connected space X is a free
CDA AV which satisfies

i) H*(AV,d) =2 H*(X; Q).

i) AFV/AYVAYY = 7.(X) ® QF

Now we can state the Friedlander-Halperin theorem (topological version)

Theorem 0.3.2. Suppose X s rationally elliptic of formal dimension n. Then
i) dim 7,o04(X) @ Q > dim 7epen (X) @ Q.
i) If {x;} is a basis of Aim Tega(X) ® Q and {y;} a basis of dim Tepen(X) @ Q, then

n = Z degxj — Z (degy; — 1).

ii) n > degy; and 2n — 1 > degz;.
) m(X)®Q =0, fori>2n.

Démonstration. See 2] for the algebraic version. O

Corollary 0.3.1. If (AV,d) is elliptic and has formal dimension n, then

Vi=0,q > 2n.

10
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