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0.1 Introduction

A minimal model is a particularly tractable kind of commutative di�erential graded alge-
bra (cdga) that can be associated to any nice cdga or to any nice space. The word minimal
emphasizes that, at least in many cases of interest, the model is calculable. The amazing fea-
ture of minimal models of spaces is their ability to algebraically encode all rational homotopy
information about a space. This is, of course, why minimal models are important.

Among the cdga's, some have more interesting properties than others. This is the case for
the so-called Sullivan cdga's and minimal cdga's.[3]

This lecture is based essentially on the section 12 of [2], the �rst chapters of [3]and the part
concerned to Sullivan models, Elliptic Spaces of [1], we denote then by C∗(X,K) the cochain
algebra of normalized singular cochains on a topological space X. This algebra is almost never
commutative although it is homotopy commutative.

We introduce a naturally de�ned commutative cochain algebra APL(X;K), and natural
cochain algebra quasi-isomorphisms

C∗(X,K)
∼=→ D(X)

∼=← APL(X;K).

where D(X) is a third natural cochain algebra. The construction of the functor APL(X;K), due
to Sullivan, is inspired from C∞ di�erential forms and the functor X  APL(X;K) equivalently

APL : topological spaces commutative cochain algebras

is contravariant....

0.2 Sullivan models

De�nition 0.2.1. A Sullivan algebra is a commutative cochain algebra of the form (ΛV, d),
where
• V = {V p}p≥1 and, as usual, ΛV denotes the free graded commutative algebra on V ;
• V =

⋃∞
k=0 V (k), where V (0) ⊂ V (1) ⊂ ... is an increasing sequence of graded subspaces

such that
d = 0 in V (0) and d : V (k)→ ΛV (k − 1), k ≥ 1.

The second condition is called the nilpotence condition on d. i.e, d preserves each ΛV (k),
and there exist graded subspaces Vk ⊂ V (k) such that ΛV (k) = ΛV (k − 1) ⊗ ΛVk, with
d : Vk → ΛV (k − 1).

The Sullivan algebra is completely described by the vector space V and the linear operator,
d. Moreover, if a graded algebra A is connected, i.e. H0(A) = K, there always exists a quasi-
isomorphism from a Sullivan algebra to (A, d). Another simple de�nition is the following

De�nition 0.2.2. A Sullivan cdga is a cdga (ΛV, d) whose underlying algebra is free commu-
tative, with V = {V k}k≥1 and such that V admits a basis xi indexed by a well-ordered set such
that dxi ∈ Λ(xj)j<i.

0.2.1 Topological spaces and the APL functor

Let ∆n be the standard simplex in Rn+1

∆n := {(t0, ..., tn) ∈ Rn+1|∀i, 0 ≤ i ≤ n,
n∑
i=0

ti = 1}
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and let ∂ denote the standard boundary operator. Consider the restriction to ∆n of all the
di�erential forms of Rn+1 of type ∑

φi1...ikdti1 ∧ ... ∧ dtik ,

where φi1...ik are polynomials in the variables t0, ..., tn over the rational numbers.
Denote all such forms by A∗(∆n); note that this algebra contains the two relations

n∑
i=0

ti = 1 and
∑

dti = 0.

Now let K be a simplicial complex and let σ ∈ K a simplex. De�ne

APL(K) := {(ωσ)σ∈K |(ωσ) ∈ A∗(σ) and ωσ|τ = ωτ if τ ⊂ ∂σ}.

Note that APL(K) is a di�erential graded commutative algebra. If L L is another simplicial
complex and f : K → L is a simplicial map, then there exists a dga morphism APL(f) :
APL(L)→ APL(K) given by

APL(f)(ωσ) = ωf(σ).

Suppose that X is a topological space homeomorphic to a simplicial complex K; thus K
is a simplicial complex whose spatial realization |K| is homeomorphic to X. Then the functor
APL associates to every such topological space X a di�erential graded commutative cochains
algebra APL(X) and to every continuous map f : X → Y, Y = |L| for some simplicial complex
L, a dga morphism APL(f) : APL(Y )→ APL(X). Notice that it is a contravariant functor.

Remark 1. Any continuous function f : X → X induces a continuous map F : K → K
using the simplicial approximation theorem, we can �nd a simplicial representative F̃ of F.
This means that, for every n ∈ N, F̃ sends n-simplices to n-simplices and that F̃ is homotopic
to F.

De�nition 0.2.3. Let X be a topological space homeomorphic to a simplicial complex. Then
the minimal model of X is de�ned to be the minimal model of the dga APL(X).

Now, coming back to Sullivan model

De�nition 0.2.4. 1. A Sullivan model for a commutative cochain algebra (A, d) is a quasi-
isomorphism

m : (ΛV, d)→ (A, d)

from a Sullivan algebra (ΛV, d).
2. If X is a path connected topological space then a Sullivan model for APL(X),

m : (ΛV, d)
∼=→ APL(X),

is called a Sullivan model forX.
3. A Sullivan algebra (or model), (ΛV, d) is called minimal if we can choose a basis {vi} for

V whose enumeration agrees with degree so that the di�erential is decomposable for each vi :
dvi ∈ ΛV<i, where V<i is the space spanned by the generators v1, ..., vi−1.

Equivalently, a Sullivan algebra (or model), (ΛV, d) is called minimal if

Im d ⊂ Λ+V.Λ+V

De�nition 0.2.5. A (Sullivan) minimal cdga is a Sullivan cdga (ΛV, d) satisfying the additional
property that dV ⊂ Λ≥2V
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If (ΛV, d) is a minimal cdga and a ∈ (ΛV )k is a cocycle and a decomposable element, then
we construct a new minimal cdga by introducing a new generator x in degree k−1 and putting
dx = a. This gives the minimal cdga (Λ(V ⊕ Kx, d). By iterating this process, we can easily
construct a lot of minimal cdga's. For instance, (Λ(x, y, z), d) with |x| = |y| = 2, |z| = 3, dx =
dy = 0 and dz = x2 − y2 is automatically a Sullivan minimal model.

If (A, d) is connected algebra then, it has always a minimal Sullivan model, and this is
uniquely determined up to isomorphism.

Sullivan models for topological spaces X are, among all the commutative models, the ones
that provide the key to unlocking the rational homotopy properties of X. For example, if (ΛV, d)
is a Sullivan model for X then, as with any commutative model,

H∗(ΛV, d)
∼=→ H∗(X;K).

However, if (ΛV, d) is minimal there is also a natural isomorphism

V
∼=→ HomZ(π∗(X);K),

provided that X is simply connected and has rational homology of �nite type.

Proposition 0.2.1. If a simply connected topological spaces X and Y have the same rational
homotopy type, then APL(X) and APL(Y ) are weakly equivalent.

The minimal models are unique up to isomorphism, then APL(X) and APL(Y ) have iso-
morphic minimal models : the isomorphism class of a minimal model of X is an invariant of
its rational homotpy type.

We can summarize two interesting correspondences as follows :

{Rational homotopy types}
∼=→ {Isomorphism classes of minimal Sullivan algebras overQ}

Sullivan models also provide good descriptions of continuous maps, and of the relatin of
homotopy. Indeed, let Λ(t, dt) be the free commutative graded algebra on the basis {t, dt} with
degt = 0, degdt = 1, and let d be the di�erential sending t 7→ dt. De�ne augmentations

ε0, ε1 : Λ(t, dt)→ K by ε0(t) = 0, ε1(t) = 1

De�nition 0.2.6. Two morphisms ϕ0, ϕ1 : (ΛV, d) → (A, d) from a Sullivan algebra to an
arbitrary comutative cochain algebra are homotopic if there is a morphism

Φ : (ΛV, d)→ (A, d)⊗ (Λ(t, dt), d)

such that (id.εi)Φ = εi, i = 0, 1. Here Φ is called a homotopy from ϕ0 to ϕ1, and we write
ϕ0 ∼ ϕ1.

Suppose mX : (ΛV, d)→ APL(X) and mY : (ΛW,d)→ APL(Y ) are Sullivan models de�ned
over Q, and that f : X → Y is a continuous map. Then it turns out that there is a unique
homotopy class of morphism ϕ : (ΛW,d) → (ΛV, d) such that mXϕ = APL(f)mY : ϕ is called
a Sullivan representative for f. Furthermore, the homotopy class of ϕ depends only on the
homotopy class of f. It is shown that f 7→ ϕ de�ne a bijection and there is the following
correspondence

{homotopy class of mapsX → Y }
∼=→ {homotopy classes of morphisms(ΛW,d)→ (ΛV, d)}
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0.2.2 Sullivan algebras and models : constructions and examples

Firstly, we recall some notations and basic facts associated with free commutative graded
algebras ΛV ;
• ΛV = symmetric algebra(V even)⊗ exterior algebra(V odd). The subalgebras Λ(V ≤p),Λ(V >q), ...

are denored ΛV ≤p,ΛV >q, ....
• If {vi} is a basis for V we write Λ({vi}) or Λ(v1, ...) for ΛV.
• ΛqV is the linear span of elements of the form v1 ∧ ... ∧ vq, vi ∈ V. Elements in ΛqV have

wordlength q.
• ΛV =

⊕
q ΛqV and we write Λ≥qV =

⊕
i≥q ΛiV and Λ+V = Λ≥1V.

• If V =
⊕

i Vi then ΛV =
⊗

i ΛVi.
• Any linear map of degree zero from V to a commutative graded algebra A extends to a

unique graded algebra morphism ΛV → A.
• Any linear map of degree k (k ∈ Z) from V to ΛV extends to a unique derivation of degree

k in ΛV.
In particular the di�erential in a Sulivan algebra (ΛV, d) decomposes uniquely as the sum

d = d0 + d1 + d2 + ... of derivations di raising the wordlength by i The derivation d0 is called
the linear part of d.

Proposition 0.2.2 (The Existence of Sullivan Models). Any commutative cochain algebra
(A, d) satisfying H0(A) = K has a Sullivan model

m : (ΛV, d)
∼=→ (A, d)

Démonstration. By construction, since V is the direct sum of graded subspaces Vk, k ≥ 0 with
d = 0 in V0 and d : Vk → Λ(

⊕k−1
i=0 Vi). Choose m0 : (ΛV0, 0)→ (A, d) so that

H(m0) : V0

∼=→ H+(A).

Since H0(A) = K, H(m0) is surjective.
Suppose m0 has been extended to mk : (Λ(

⊕k
i=0 Vi), d) → (A, d). Let zα be cocycles in

Λ(
⊕k

i=0 Vi) such that [zα] is a basis for kerH(mk). Let Vk+1 be a graded space with basis {vα}
in 1-1 correspondence with the zα, and with degvα = degzα − 1. Extend d to a derivation in
Λ(

⊕k
i=0 Vi) by setting dvα = zα. Since d has odd degree, d

2 is a derivation. Since d2vα = dzα = 0,
d2 = 0.

Since H(mk)[zα] = 0, mkzα = daα, aα ∈ A. Extend mk to a graded algebra morphism
mk+1 : Λ(

⊕k+1
i=0 Vi) → A by setting mk+1vα = aα. Then mk+1dvα = dmk+1vα, and so

mk+1d = dmk+1.
This completes the construction of m : (ΛV, d)→ (A, d) with V =

⊕∞
i=0 Vi and m|Vk = mk.

Since m|ΛV0 = m0, and H(m0) is surjective, H(m) is surjective as well. If H(m)[z] = 0 then,

since z is necessary in some Λ(
⊕k

i=0 Vi, H(mk)[z] = 0. By construction, z is a boundary in⊕k+1
i=0 Vi. Thus H(m) is an isomorphism.
We show next by induction on k that Vk is concentrated in degree ≥ 1. This is certainly

true for k = 0, because V0
∼= H+(A). Assume it true for Vi, i ≤ k. Any element in Λ(

⊕k
i=0 Vi)

of degree 1 then has the form v = v0 + ...+ vk, vi ∈ V 1
i .

Thus if dv = 0 then dvk ∈ d(Λ
⊕k−1

i=0 Vi). By construction, this implies vk = 0. Repeating
this argument we �nd v = v0 and H(mk)[v0] = H(m0)[v0] 6= 0, unless v0 = 0. Thus kerH(mk)
vanishes in degree 1 ; i.e., it is concentrated in degrees ≥ 2. It follows that Vk+1 is concentrated
in degrees ≥ 1.

Finally, the nilpotence condition on d is built into the construction.
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Example 1. The spheres, Sk.
The fundamental class [Sk] ∈ Hk(S

k;Z). that determines a unique class ω ∈ Hk(APL(Sk))
such that 〈ω, [Sk]〉 = 1, and {1, ω} is a basis for H(APL(Sk)). Let Φ be a representing cocycle
for ω.

We can distinguish two cases ;
If k is odd, then a minimal Sullivan model for Sk is given by

m : (Λ(e), 0)
∼=→ APL(Sk), deg e = k,me = Φ.

Indeed, since k is odd, 1 and e are a basis for the exterior algebra Λ(e).
If k is even, consider also

m : (Λ(e), 0)
∼=→ APL(Sk), deg e = k,me = Φ.

But now, because deg e is even, Λ(e) has as basis {1, e, e2, e3, ...} and this morphism is not a
quasi-isomorphism. However, Φ2 is certaint a coboundary, written as Φ2 = dϕ and extend m to

m : (Λ(e, e′), d)→ APL(Sk)

by setting deg e′ = 2k − 1, de′ = e2 and me′ = ϕ. The elements 1, e represent a basis of
H(Λ(e, e′), d). Thus this is a minimal model for Sk. Finally, observe that quasi-isomorphisms
(Λe, 0)→ (H∗(Sk), 0), k odd and

(Λ(e, e′), d)→ (H∗(Sk), 0), k even are given by e 7→ ω, e′ 7→ 0.

Example 2. Complex projective spaces CPn We know that H∗(CPn) = Λa/(an+1), deg a = 2
We choose z ∈ A2

PL(CPn) representing the generator of the cohomology algebra. As above,
we choose Ω ∈ A2n+1

PL (CPn) such that dΩ = zn+1. We de�ne

ϕ : (Λ(a, u), da = 0, du = an+1)→ APL(CPn)

a 7→ z

u 7→ Ω

Again one easily checks that the map

ϕ : (Λ(a, u))→ APL(CPn)

a 7→ a

u 7→ 0

is a quasi-isomorphism. Therefore π∗(CPn)⊗Q = Qa∗ ⊕Qu∗.

Example 3. Products of topological spaces
Suppose mX : (ΛV, d) → APL(X) and mY : (ΛW, d) → APL(Y ) are Sullivan models for

path connected topological spaces X and Y. Assume further that the rational homology of one
of these spaces has �nite type. Let pX : X × Y → X and pY : X × Y → Y be the projections.
Then APL(pX).APL(pY ) : APL(X)⊗APL(Y )→ APL(X×Y ) is a quasi-isomorphism of cochain
algebras.

In fact, APL(pX).APL(pY ) is clearly morphism of graded vector spaces commuting with the
di�erentials. It is a morphism of algebras because APL(X×Y ) is commutative. To see that it is
a quasi-isomorphism we use Corollary 10.10 of [2] to identify the induced map of cohomology
with the map
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H∗(X;K)⊗H∗(Y ;K)→ H∗(X × Y ;K)

given by α⊗ β 7→ H∗(pX)α ∪H∗(pY )β. that is an isomorphism (Prop 5.3 (ii)[2]).
Since APL(pX).APL(pY ) is a quasi-isomorphism so is

mX .mY : (ΛV, d)⊗ (ΛW,d)
∼=→ APL(X × Y ),

where (mX .mY )(a ⊗ b) = APL(pX)mXa.APL(pY )mY b. This exhibits (ΛV, d) ⊗ (ΛW,d) as a
Sullivan model for X × Y.

Example 4. H-spaces have minimal Sullivan models of the form (ΛV, 0).
An H-space is a based topological space (X, ∗) together with a continuous map µ : X×X →

X such that the self maps x 7→ µ(x, ∗) and x 7→ µ(∗, x) of X are homotopic to the identity

Theorem 0.2.1 (Hopf). If X is a path connected H-space such that H∗(X;K) has a �nite
type, H∗(X;K) is a free commutative graded algebra.

Consider the map ϕ : ΛV
∼=→ H∗(X;K)

and let w ∈ APL(X) be a cocycle representing the cohomology classe v. The correspondence
v 7→ w de�nes a linear map V → APL(X) wich extends to a unique morphism m : ΛV →
APL(X). Since ϕ is an isomorphism it follows that m is a quasi-isomorphism :

m : (ΛV, 0)
∼=→ APL(X)

is a minimal Sullivan model for the H-space X.

Example 5. A cochain algebra (ΛV, d) that is not a Sullivan algebra. Consider the cochain
algebra (A, d) = (Λ(v1, v2, v3), d), degvi = 1, with dv1 = v2v3, dv2 = v3v1, and dv3 = v1v2.
Here (A, d) is not a Sullivan algebra. (If it were, it would have to have a cocycle of degree 1,

w = v1v2v3 represent a basis for H(A), and so it has a minimal model m : (Λ(w), 0)
∼=→ (ΛV, d),

degv = 3, m(w) = v1v2v3.)

Example 6. The minimal Sullivan algebra (Λ(a, b, x, y, z), d), where

da = db = 0, dx = a2, dy = ab, dz = b2

and dega = degb = 2 and degx = degy = degz = 3.
Here, the cohomology algebra H has a basis 1, α = [a], β = [b], γ = [ay− bx], δ = [by− az],

ε = [aby − b2x].
Note that αδ = ε = βγ, and that all other products of basis elements in H+ are zero.

To construct a minimal model for the cochain algebra (H, 0), we consider m : (ΛV, d)
∼=→

(H, 0), beginning with
V 2 = 〈v1, v2〉 with dv1 = dv2 = 0, mv1 = α,mv2 = β and V 3 = 〈u1, u2, u3〉 with du1 =

v2
1, du2 = v1v2, du3 = v2

2 and mu1 = mu2 = mu3 = 0.
Note that necessarily m(v1u2 − v2u1) = 0 = m(v2u2 − v1u3).
Thus we need to add V 4 = 〈x1, x2〉 with dx1 = v1u2 − v2u1, dx2 = v2u2 − v1u3, and mx1 =

mx2 = 0,
and V 4 = 〈y1, y2〉 with dy1 = dy2 = 0 and my1 = γ, my2 = δ.
The process turns out (but we can not yet prove this) to continue without end. Observe that

this provides two distinct minimal Sullivan algebras with the same cohomology algebra.
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0.3 Elliptic Spaces

This section is destined to the study of Sullivan minimal models in the case of the �niteness
of cohomological and homotopical dimension, that is ellipticity, let X be a 1-connected CW-
complex with �nitely many cells in each dimension. It is well-known that, for each i, its i-th
homotopy groups πi(X) is a �nitely generated abelian groups.

The question that one can state is how do the size of the space X in�uences the size of
π∗(X) ? The rough answer is :

If X is small, then either π∗(X)/(torsion) is very small or very large.

0.3.1 Finiteness of the formal dimension

We assume in the following that all the minimal models (ΛV, d) satisfy V 1 = 0 and that V
has �nite type, i.e. the topological space X is 1-connected and H i(X;Q) is �nite dimensional
for every i.

De�nition 0.3.1. The formal dimension fd(X) of a commutative di�erential graded algebra
(ΛV, d) is equal to the maximum of all k such that Hk(ΛV ) 6= 0. If no such k exists we write
fd(X) =∞.

To begin with, we describe the important process which consists in killing variables in
Sullivan models.

Suppose we are given a minimal Sullivan model (ΛV, d); there always exists a v ∈ V such
that dv = 0. Let us choose a Q-vector space such that V decomposes as V = Qv ⊕W with
dv = 0, and de�ne (ΛW,d) = Λv ⊗ ΛW/(v).

The algebraic structure is given by :

ΛV = Λv ⊗ ΛW = (Qv ⊕ Λ+v)⊗ ΛW = ΛW ⊕ Λ+v ⊗ ΛW,

where the second summand is precisely the ideal v.ΛV = (v), the ideal generated by v in
ΛV. Because dv = 0, vΛV is d-stable (i.e. d(v.ΛV ) ⊂ v.d(ΛV )). Then ΛV/v.ΛV is a CDA ;
as a graded algebra it is isomorphic to ΛW. Using this isomorphism, we endow ΛW with a
di�erential ; let us denote this di�erential by d. We say that (ΛW, d) is the minimal Sullivan
model obtained by killing the variable v.

Proposition 0.3.1. Suppose that ΛV decomposes as Λv ⊗ ΛW.
i) If degv = 2n and fd(ΛV ) = k <∞, then fd(ΛW ) = k + 2n− 1.
ii) If degv = 2n+ 1 and fd(ΛV ) = k <∞, then

fd(ΛW ) = k − (2n+ 1) or fd(ΛW ) =∞.

0.3.2 Elliptic Models

De�nition 0.3.2. An elliptic Sullivan minimal model is a minimal model (ΛV, d) such that

dimV <∞ and dimH(ΛV ) <∞.

For such models we can choose a �nite basis v1, ..., vr such that dvi is a polynomial in the
variables v1, ..., vi−1.

For each i we have the quotient model

(Λ(vi, ..., vr), d) = (ΛV, d)/(v1, ..., vi−1).

7
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Proposition 0.3.2. Suppose (ΛV, d), is elliptic. Then
i) For each i, (Λ(vi, ..., vr) is elliptic.
ii) fd(ΛV ) =

∑
|vi|odd |vi| −

∑
|vi|even(|vi| − 1).

Démonstration. Let W = (v2, ..., vr). If |vi| is even, then by Proposition 0.. ΛW is elliptic and
fd(ΛW ) = fd(ΛV ) + |v1| − 1.

If |v1| is odd, let us consider the derivation θ : ΛW → ΛW and its "linear part"

θ1 : ΛqW → ΛqW.

Since θ1 decreases the degree, there exists an N such that one actually has (θ1|W )N = 0,
(N ≤ r−1). By Proposition 0.., this impliesH(ΛW ) <∞; i.e. ΛW is elliptic and by Proposition
0.. fd(ΛW ) = fd(ΛV )− |v1|.

Repeating the process we get the announced formula.

Remark 2. Since (Λvr, 0) is elliptic, |vr| must be odd.
We now proceed to a characterization of elliptic models. Let P be the span of the odd gene-

rators x1, x2, ..., xk with xi = v2i+1. Let Q be the span of the even generators y1, y2, ..., yk with
yi = v2i. We identify

ΛV = ΛP ⊗ ΛQ

= K[y1, y2, ..., yl]⊗ E(x1, x2, ..., xk)

= K[y1, y2, ..., yl]⊗ ΛV ⊗ P.

In particular, dyi ∈ ΛV ⊗ P and we can write

dxi = fi(y) + Ωi.

where fi is a polynomial and Ωi ∈ ΛV ⊗ P.
De�ne n =

∑
|vi| −

∑
(|vi| − l).

and �nally, we give the following theorem

Theorem 0.3.1. The following conditions are equivalent for a CDA (ΛV, d) with dimV <∞ :
i) dimH(ΛV ) <∞; i.e.(ΛV, d) is elliptic.
ii) K[y1, y2, ..., yl]/(f1, ..., fk) is �nite dimensional.
iii) Hn(ΛV ) and H i(ΛV ) = 0, for n < i < 3n.

Démonstration. See [1]

Example 7. Let Λ(x, y, z, a, u, v) be the free graded commutative algebra generated by x, y, z, a, u, v
in respective degrees 3,3,3,8,13,16 De�ne a di�erential by

dx = dy = dz = 0

da = xyz

du = xya

dv = a2 + 2zu.

De�ne a new di�erential δ such that δx = δy = δz = δa = δu = 0, δv = a2. We obtain

H(ΛV, δ) = Λ(x, y, z, u)⊗H(Λ(a, v), δv = a2)

= Λ(x, y, z, u)⊗ Λa/(a2),

which is of dimension 32 <∞. Thus H(ΛV, d) is �nite dimensional and

fd(ΛV, d) = 3 + 3 + 3− 7 + 13 + 15 = 30.

Example 8. Λ(a2, x3, u3, b4, v5, w7; da = dx = 0, du = a2, db = ax, dv = ab−ux, dw = b2− vx).
Here subscripts denote degrees. The di�erential δ is given by δa = δb = δx = 0, δu =

a2, δv = ab, δw = b2. Thus in H(ΛV, δ) we have [a]2 = [b]2 = 0 and so (ΛV, d) is elliptic.
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0.3.3 Some equalities and inequalities

Suppose (ΛV, d) is elliptic and generated by odd-degree generatorsx1, ..., xk, and even-degree
generators y1, ..., yl. (we preserve all notations of the previous paragraph). Set

|yi| = 2ai, |xj| = 2bj − 1, and n = fd(ΛV, d).

Recall from Proposition 0.2.2 ii) :
Fact one. n =

∑l
j=1(2bj − 1)−

∑k
i=1(2ai − 1).

Next write dxj = f(y1, ..., yl) + ΛV ⊗ P and recall that

dimK[y1, y2, ..., yl]/(f1, ..., fk) <∞, degfj = 2bj.

This means k ≥ l,i.e. :
Fact two.

The number of odd generators≥ the number of even generators. Now we renumber the
indices such that

a1 ≥ ... ≥ al and b1 ≥ ... ≥ bk

De�ne a map from K[y1, y2, ..., yl]/(f1, ..., fk) to

K[y1, y2, ..., yr]/(f1(y1, y2, ..., yr, 0, ..., 0), ..., fk(y1, y2, ..., yr, 0, ..., 0))

by yi 7→ 0, i > r.
At least r of the fj(y1, y2, ..., yr, 0, ..., 0) are non-zero (because the last quotient algebra is

�nite, there are more equations than variables) ; say fj1 , ..., fjr out of f1, ..., fk. Thus jr ≥ r and
so

2br = degfr ≥ degfjr = degym1
1 ...ymr

r =
r∑
i

mi2ai ≥ 4ar

and
br ≥ 2ar, 1 ≤ r ≤ l.

Now facts one and two combined yield

n ≥
l∑

j=1

(2bj − 1)−
l∑

i=1

(2ai − 1) =
l∑

j=1

2(bj − aj).

Substituting the inequality (*) we get :

n ≥
l∑

j=1

2aj.

That is
Fact three.

n ≥
∑

degli=1yi
Finally, we obtain

n =
k∑
j=1

bj +
k∑
j=1

(bj − 1)−
l∑

i=1

(2ai − 1)

≥
k∑
j=1

bj +
k∑
j=1

(bi − 2ai) ≥
k∑
j=1

bj,

by inequality (*).
Fact four. 2n− 1 ≥

∑
degkj=1xj.
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0.3.4 Euler-Poincaré characteristic

We recall the Euler-Poincaré characteristic χM of a �nite dimensional vector space by χM =∑
(−1)i dimM i = dimM even − dimM odd. If M is equipped with a di�erential, d, then χM =

χH(M,d).

Proposition 0.3.3. Let χ be the Euler-Poincaré characteristic of the cohomology of an elliptic
Sullivan algebra (ΛV, d). Then

χ ≥ 0 and dimV odd − dimV even ≥ 0.

Moreover, the following conditions are equivalent :
(i) χ > 0.
(ii) H(ΛV, d) is concentrated in even degrees.
(iii) H(ΛV, d) is the quotient Λ(y1, ..., yq)/(u1, ..., uq) of a polynomial algebra in variables

(yj) of even degree by an ideal generated by a regular sequence (uj).
(iv)) (ΛV, d) is isomorphic to a pure Sullivan algebra (ΛQ ⊗ ΛP, d) in which Q = Qeven,

P = P odd and d maps a basis of P to a regular sequence in ΛQ.
(v) dimV odd − dimV even = 0.

Démonstration. See [2].

0.3.5 Topological interpretation

De�nition 0.3.3. A simply connected topological space X is rationally elliptic if

dimH∗(X;Q) <∞ and dimπ∗(X)⊗Q <∞.

Let us call n := max{i;H i(X;Q) 6= 0} the formal dimension of X.
We recall that the Sullivan minimal model of any rational I-connected space X is a free

CDA ΛV which satis�es
i) H∗(ΛV, d) ∼= H∗(X;Q).
ii) Λ+V/Λ+V.Λ+V = π∗(X)⊗Q]

Now we can state the Friedlander-Halperin theorem (topological version)

Theorem 0.3.2. Suppose X is rationally elliptic of formal dimension n. Then
i) dimπodd(X)⊗Q ≥ dimπeven(X)⊗Q.
ii) If {xj} is a basis of dimπodd(X)⊗Q and {yi} a basis of dim πeven(X)⊗Q, then

n =
∑

degxj −
∑

(degyi − 1).

iii) n ≥ degyi and 2n− 1 ≥ degxj.
iv) πi(X)⊗Q = 0, for i ≥ 2n.

Démonstration. See [2] for the algebraic version.

Corollary 0.3.1. If (ΛV, d) is elliptic and has formal dimension n, then

V q = 0, q ≥ 2n.
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