MAAT SEMINAR, CRMEF RABAT

Self Homotopy Equivalences Theriault's Conjecture

JUNE 6, 2015

My Ismail Mamouni

Professeur Agrégé-Docteur CRMEF Rabat http://myismail.net mamouni.myismail@gmail.com

MAAT Seminar, CRMEF Rabat

Joint work with

Ben El Krafi Badr Fac. Sc. Ain Chock, Casablanca

MAAT Seminar, CRMEF Rabat

Theriault Open Question

What one may say about the finitude of the homotopical nilpotency of the monoid of self homotopy equivalence whenever the cocategory of its classifying space is ?

Theriault Open Question

What one may say about the finitude of the homotopical nilpotency of the monoid of self homotopy equivalence whenever the cocategory of its classifying space is ?

Ben El Krafi-M. (2015) -

In rational context : Yes and More

• • • • • • • • • • • •

Content

Recalling Our results Intersected Results Acknowledgements

a

X topological space

Self Homotopy Equivalences

aut(X) denotes the monoid of its self homotopy equivalences, that are maps $f : X \to X$ which admits a homotopy inverse.

Baut(X) denotes the associated classifying space.

• • • • • • • • • • • •

Nilpotency

For a topological monoid *G*, the homotopical nilpotency of *G*, denoted Hnil(*G*), is then the least integer *n* such that n + 1-th commutator c_{n+1} is nullhomotopic, where iterated commutators $c_n : G^n \to G$ are inductively defined, using the homotopy inverse as follows : c_1 is the identity, $c_2(a, b) := aba^{-1}b^{-1}$ and $c_n := c_2 \circ (c_{n-1}, c_1)$.

Quillen model

That is a differential graded Lie algebra, (\mathbb{L}_W, ∂) , where *W* is a graded vector space, with $\partial(\mathbb{L}_W) \subset \mathbb{L}_W^{\geq 2}$

D. Quillen (1967)

Any simply connected and rational CW-complex of finite type, *X*, admits a minimal Quillen model (\mathbb{L}_W , ∂), unique up to isomorphism, which encodes the rational homotopy type as follows : $H_*(\mathbb{L}_W, d) \cong \pi_{*+1}(X) \otimes \mathbb{Q}$. $W \cong \tilde{H}_{*+1}(X; \mathbb{Q})$

Quillen model

That is a differential graded Lie algebra, (\mathbb{L}_W, ∂) , where *W* is a graded vector space, with $\partial(\mathbb{L}_W) \subset \mathbb{L}_W^{\geq 2}$

D. Quillen (1967)

Any simply connected and rational CW-complex of finite type, *X*, admits a minimal Quillen model (\mathbb{L}_W, ∂) , unique up to isomorphism, which encodes the rational homotopy type as follows : $H_*(\mathbb{L}_W, d) \cong \pi_{*+1}(X) \otimes \mathbb{Q}$. $W \cong \tilde{H}_{*+1}(X; \mathbb{Q})$

Cocategory

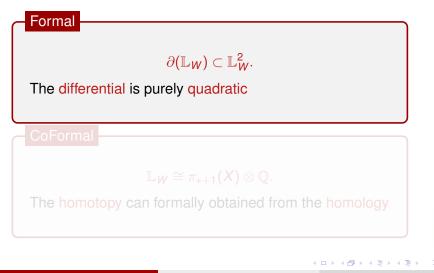
the rational cocategory of *X*, denoted $\operatorname{cocat}_{\mathbb{Q}}(X)$, is defined to be the smallest integer (or infinite) such that the projection $(\mathbb{L}_W, \partial) \to (\mathbb{L}_W/\mathbb{L}_W^{\geq n+1}, \partial)$ admits a retract.

My Ismail Mamouni

MAAT Seminar, CRMEF Rabat

June 6, 2015 8 / 31

Recalling Formal-Coformal Spaces



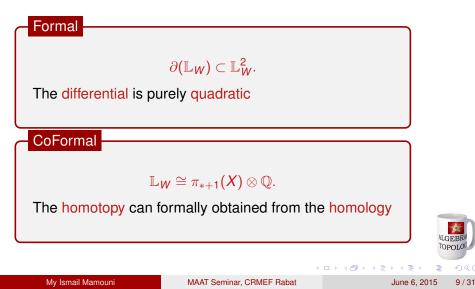
My Ismail Mamouni

MAAT Seminar, CRMEF Rabat

June 6, 2015 9 / 31

OPOL

Recalling Formal-Coformal Spaces



Theorem 1

Let X be a simply connected CW-complex of finite type. If $cocat_{\mathbb{Q}}(Baut(X))$ is finite, then $Hnil_{\mathbb{Q}}(aut(X))$ is also. Moreover, we have

 $\operatorname{Hnil}_{\mathbb{Q}}(\operatorname{aut}(X)) \leq \operatorname{cocat}_{\mathbb{Q}}(\operatorname{Baut}(X)).$

My Ismail Mamouni

MAAT Seminar, CRMEF Rabat

June 6, 2015 10 / 31

Proposition 1.1

Let X be a simply connected CW-complex of finite type, such that Baut(X) is coformal. If $\text{cocat}_{\mathbb{Q}}(\text{Baut}(X))$ is finite, then $\text{Hnil}_{\mathbb{Q}}(\text{aut}(X))$ is also. Moreover, we have

 $\operatorname{Hnil}_{\mathbb{Q}}(\operatorname{aut}(X)) = \operatorname{cocat}_{\mathbb{Q}}(\operatorname{Baut}(X)).$

My Ismail Mamouni

MAAT Seminar, CRMEF Rabat

June 6, 2015 11 / 31

< ロ > < 同 > < 回 > < 回 >

Proposition 1.2

Let X be a simply connected CW-complex of finite type, such that Baut(X) is formal. If $\text{cocat}_{\mathbb{Q}}(\text{Baut}(X))$ is finite, then $\text{Hnil}_{\mathbb{Q}}(\text{aut}(X))$ is also. Moreover, we have

 $\operatorname{Hnil}_{\mathbb{Q}}(\operatorname{aut}(X)) \leq 2.$

My Ismail Mamouni

MAAT Seminar, CRMEF Rabat

June 6, 2015 12 / 31

Applications

- the inequality Hnil_Q(aut(X)) > 2 is an obstruction for the formality of Baut(X), when cocat_Q(Baut(X)) is finite;
- Unfortunately, in general Baut(X) is not nilpotent and so it is not possible (or easy, anyway) to talk about its formality.

< ロ > < 同 > < 回 > < 回 >

Applications

- the inequality Hnil_Q(aut(X)) > 2 is an obstruction for the formality of Baut(X), when cocat_Q(Baut(X)) is finite;
- Unfortunately, in general Baut(X) is not nilpotent and so it is not possible (or easy, anyway) to talk about its formality.

< ロ > < 同 > < 回 > < 回 >

Exit issue

- The path components of a well-pointed grouplike space are all of the same homotopy type;
- We focus on Baut₁(X), where aut₁(X) denotes the path component of the identity map;
- The formality of Baut₁(X) is well studied by Smith;
- The respective Sullivan and Quillen minimal models of both aut₁(X) and Baut₁(X) are well and deeply described in terms of derivations by Felix, Buijs and Smith;
- aut₁(X) and its classifying space play a crucial role in topology and geometry (Stasheff's classification for fibration over a given fiber, fake Lie groups, the homotopy of the diffeomorphisms on smooth manifold, ...).

Theorem 2

Let X be a simply connected CW-complex of finite type. If $\text{cocat}_{\mathbb{Q}}(\text{Baut}_1(X))$ is finite, then $\text{Hnil}_{\mathbb{Q}}(\text{aut}_1(X))$ is also. Moreover, we have

 $\operatorname{Hnil}_{\mathbb{Q}}(\operatorname{aut}_{1}(X)) \leq \operatorname{cocat}_{\mathbb{Q}}(\operatorname{Baut}_{1}(X)).$

My Ismail Mamouni

MAAT Seminar, CRMEF Rabat

June 6, 2015 15 / 31

Proposition 2.1

Let X be a simply connected CW-complex of finite type, such that $\operatorname{Baut}_1(X)$ is coformal. If $\operatorname{cocat}_{\mathbb{Q}}(\operatorname{Baut}_1(X))$ is finite, then $\operatorname{Hnil}_{\mathbb{Q}}(\operatorname{aut}(X))$ is also. Moreover, we have

 $\operatorname{Hnil}_{\mathbb{Q}}(\operatorname{aut}_{1}(X)) = \operatorname{cocat}_{\mathbb{Q}}(\operatorname{Baut}_{1}(X)).$

My Ismail Mamouni

MAAT Seminar, CRMEF Rabat

June 6, 2015 16 / 31

< ロ > < 同 > < 回 > < 回 >

Proposition 2.2

Let X be a simply connected CW-complex of finite type, such that $\operatorname{Baut}_1(X)$ is formal. If $\operatorname{cocat}_{\mathbb{Q}}(\operatorname{Baut}_1(X))$ is finite, then $\operatorname{Hnil}_{\mathbb{Q}}(\operatorname{aut}_1(X))$ is also. Moreover, we have

 $\operatorname{Hnil}_{\mathbb{Q}}(\operatorname{aut}_{1}(X)) \leq 2.$

My Ismail Mamouni

MAAT Seminar, CRMEF Rabat

June 6, 2015 17 / 31

< ロ > < 同 > < 回 > < 回 >

Open Problem 1

When $Baut_1(X)$ is a rational H-space?

My Ismail Mamouni

MAAT Seminar, CRMEF Rabat

June 6, 2015 18 / 31

- H-spaces are formal;
- the inequality Hnil_Q(aut₁(X)) > 2 is an obstruction for the formality of Baut₁(X), when cocat_Q(Baut₁(X)) is finite;
- Baut₁(G) is rarely H-space when G is a topological group;

4 **A b b b b b b**

Intersected result 1

If *G* is a connected topological group such that $\text{Baut}_1(G)$ is a H-space of finite cocategory, then $\text{Hnil}(G) \leq 2$.

My Ismail Mamouni

MAAT Seminar, CRMEF Rabat

June 6, 2015 20 / 31

Open Problem 2 : Halperin Conjecture

The rational Serre spectral sequence collapses at the E_2 term for every fibration of simply connected whose fiber is an elliptic F_0 -CW complex.

My Ismail Mamouni

MAAT Seminar, CRMEF Rabat

June 6, 2015 21 / 31

A .

*F*₀-space means *H*^{odd}(*X*; *Q*) = 0, in this case Baut₁(*X*) is a H-space;

My Ismail Mamouni

MAAT Seminar, CRMEF Rabat

June 6, 2015 22 / 31

Intersected result 2

Let X is an elliptic F_0 -space such that $\text{cocat}_{\mathbb{Q}}(\text{Baut}_1(X))$ is finite. If X verifies the Halperin conjecture, then

 $\operatorname{cocat}_{\mathbb{Q}}(\operatorname{Baut}_{1}(X)) = \operatorname{Hnil}_{\mathbb{Q}}(\operatorname{aut}_{1}(X)) = 1.$

My Ismail Mamouni

MAAT Seminar, CRMEF Rabat

June 6, 2015 23 / 31

不同 トイモトイモ

Open Problem 3 : Realizability problem

Any group G is rationally realizable as self homotopy equivalences of a rational 1-connected CW-complex X, i.e.,

$$\operatorname{aut}(X) \cong G$$

My Ismail Mamouni

MAAT Seminar, CRMEF Rabat

June 6, 2015 24 / 31

• Yes, when G is finite (Costoya and Viruel)

My Ismail Mamouni

MAAT Seminar, CRMEF Rabat

June 6, 2015 25 / 31

Intersected result 3

If *G* is finite group whose a classifying space *BG* is of finite rational cocategory, then *G* is of finite rational homotopical nilpotency. Moreover we have $\operatorname{Hnil}_{\mathbb{O}}(G) \leq \operatorname{cocat}_{\mathbb{O}}(BG)$.

My Ismail Mamouni

MAAT Seminar, CRMEF Rabat

June 6, 2015 26 / 31

Main used references

- U. Buijs, S. B. Smith, Rational homotopy type of the classifying space for fibrewise self-equivalences, Proc. A.M.S, Vol. 141, Num. 6 (2013), 2153-2167.
- M. Sbaï, La cocatégorie rationnelle d'un espace, Thèse de 3ème cycle, Univ. Lille, France (1984).
- Y. Félix, G. Lupton and S. B. Smith, The rational homotopy type of the space of self-equivalences of a fibration, Homology, Homotopy and Applications, vol. 12(2), 2010, 371-400.

・ロト ・ 四ト ・ ヨト ・ ヨト …

Acknowledgements

J.C. Thomas, Angers, France

Suggesting the subject

• • • • • • • • • • •

My Ismail Mamouni

MAAT Seminar, CRMEF Rabat

June 6, 2015 28 / 31

Acknowledgements

S.B. Smith, Philadephia USA

lectures and the many fruitful conversations

My Ismail Mamouni

MAAT Seminar, CRMEF Rabat

June 6, 2015 29 / 31

Acknowledgements MAAT : Moroccan Area of Algebraic Topology

MAAT Seminar, CRMEF Rabat

June 6, 2015 30 / 31

• • • • • • • • • • • •

That's all talks

MAAT Seminar, CRMEF Rabat